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Context and motivation

Design of imperative (object oriented) programming languages1

Key issue is sharing/aliasing of variables: a change to x affects y
as well (in object oriented languages variables refer to objects!)
unwanted sharing relations are common bugs: inconsistent state,
invalidation of invariants
particularly important in the concurrent/multithreaded case in
which the “heap” containing objects is shared by threads
hence: interest in type systems which statically detect (and
control) sharing and mutation

1Marco Servetto is working on the language 42 see http://l42.is/
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Simplified Java syntax

e ::= expression
x variable
| e.f field access
| e.m(e1, . . . ,en) method call
| e.f=e′ field assignment
| new C(e1, . . . ,en) object creation
| {T1 x1=e1; . . .Tn xn=en; e} block

T ::= C | int | . . . type

md ::= T m(T ′
1 y1, . . . ,T ′

k yk ){T1 x1=e1; . . .Tn xn=en; e} method definition

cd ::= class C {T1 f1; . . .Tn fn; md1 . . .mdk} class definition

We assume classes have a constructor initialising all their fields:
C(T1 f1, . . . ,Tn fn){this.f1 = f1; . . .this.fn = fn; }

in the examples we sometimes omit the outermost block.
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Sharing between variables

class B { C f; } class C { int f;}

     B
	f=

x
= 

     C
	f=0

y
= 

     B
	f=

x
= 

     C
	f=5

y
= 

     B
	f=

x
= 

     C
	f=3

y
= 

C y = new C(0);  B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

     B
	f=

x
= 

     C
	f=0

y
= 

     B
	f=

x
= 

     C
	f=5

y
= 

     B
	f=

x
= 

     C
	f=3

y
= 

C y = new C(0);  B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f
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Uniqueness and immutability

We focus on the following properties of a reference x :

Uniqueness: x denotes an isolated portion of store, called a
capsule
= the reachable subgraph cannot be reached through other (non immutable)
references
so x denotes mutable state that can be safely handled by a thread
Immutability: x denotes an immutable portion of store
= the reachable subgraph cannot be modified through any reference
x can be safely shared in a multithreading environment

In the following nodes in red refer to mutable references in green to
immmutable references and in blu to unique/capsule references.
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Immutability

class D {
C f1; C f2; C f3;
D m(C z1){C x = new C(1); C y = new C(2); new D(x,y,z1);}
}

  
C z = new C(0);  
D w = m(z); 
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Immutability

class D {
C f1; C f2; C f3;
D m(C z1){C x = new C(1); C y = new C(2); new D(x,y,z1);}
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C z = new C(0);  
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z
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     C
 f=0
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w
=

Since z is immutable if there are no w.f=…  also w is immutable 
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Uniqueness (capsule)

class D {
C f1; C f2; C f3;
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Not a capsule

D m(D z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,z1);}
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 f=1

z
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w
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y
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     C
 f=1
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f1=
f2=
f3=
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x
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     C
 f=1

The reference w is connected to a mutable reference!
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The reference w is just a mutable reference

D m(D z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,z1);}

C z = new C(0);
D w = m(z);
z.f = 7; // modifies w.f3

     C
 f=1

z
= 

w
= 

y
= 

     C
 f=1

     D
f1=
f2=
f3=

= 
x
= 

     C
 f=1
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Our proposal: static checks via a type and effect
system

enrich types with type modifiers
define syntax directed rules that

1 infer sharing (possibly) introduced by the evaluation of an
expression

2 enforce the restriction that only objects referred to by mutable
references can be mutated

3 check that unique references refers to capsules
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Modifiers

Types are either primitive types, like int (and then immutable), or references

µC

depending on the modifier of µ there are restrictions and assumptions
µ ::= mut no restrictions, no assumptions

| read readonly: x.f=e is not legal

| imm readonly +
the reachable subgraph will not be modified
through any other reference

| caps the reachable subgraph is a capsule
can be used at most once

caps ≤ mut ≤ read caps ≤ imm ≤ read
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Computing sharing effects

define a type system to infer sharing (possibly) introduced by the
evaluation of an expression:

Γ ` e : C | S
Γ type assignment x1 : µ1 C1, . . . , xn : µn Cn
C the type (class) of the result of the expression
S sharing relation
= equivalence relation on free variables of e plus res

x and y in the same equivalence class means
evaluation of e can introduce sharing between x and y
if x is in the equivalence class of res
evaluation of e returns a reference in sharing with x
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Operations introducing sharing between variables

field assignment

object creation
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Detecting uniqueness

uniqueness is detected when the result of an expression is disjoint from any of
its free mutable variable

formally, the equivalence class of res does not contain mutable variables in S
if class C{D f;} and class D{C f;} then

{Cw=(x.f=y); Cu=(z.f); u}
where x : D, y : C and z : D, is not a capsule since

Γ ` {Cw=(x.f=y); Cu=(z.f); u} : C | {x,y}, {z,res}

unless z is immutable

whereas
{Cw=(x.f=y); Cu=new D(new C()).f; u}

is a capsule since

Γ ` {Cw=(x.f=y); Cu=new D(new C()).f; u} : C | {x,y}, {z}, {res}
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Programming examples

modifier of this in violet

class List { ...

caps List deepcopy(read)/*{this}, {res}*/{ ... }

mut List concat (mut, read List other)
/*{this,res,other}*/{ ... }

caps List concatcopy (read, read List other)
/*{this}, {res}, {other}*/{ ... }

}
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Programming examples

class IntListReader {
static caps IntList readIntList (mut Scanner s) /*{s}, {res}*/{

mut IntList list=new IntList()
while(s.hasNextNum()){
list.addInt(s.nextNum())

}
return list// capsule recovery

}
}

class Scanner { ...
boolean hasNextNum (read)
int nextNum (mut)

}
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Programming examples

class IntListReader {...//as before
static caps IntList update(caps IntList old, mut Scanner s)
/*{s}, {res}*/ {
mut IntList list=old//we open the capsule ‘old’
while(s.hasNextNum()){
list.addInt(s.nextNum())

}
return list

}
}
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Programming examples

class Person{
private mut PersonList friends;
read PersonList readFriends (read)/*{this,res}*/{

return this.friends;
}
mut PersonList getFriends (mut)/*{this,res}*/{

return this.friends;
}

}

two getter methods with different type annotations:
p.readFriends() can be invoked on any p, imm if p is imm
p.getFriends() p cannot be read or imm
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(Some) related work

(variants of) capsule property:
isolated [Gordon et al. OOPSLA’12]

external uniqueness [Clarke&Wrigstadt ECOOP’03]

balloon [Almeida ECOOP’97, Servetto et al. WODET’14]

island [Dietl et al. ECOOP’07]

ownership: x is “owned” by y , always true, capsule notion more dynamic

types as compositions of capabilities
[Haller&Odersky ECOOP’10, Clebsch et al. AGERE’15,Castegren&Wrigstad ECOOP’16]

the Rust language rust-lang.org

the Pony language ponylang.org
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Conclusions

type and effect system which infers sharing possibly introduced by
the evaluation of an expression

very expressive
we have a formalisation in Coq of the typing and the evaluation
(modelling sharing relations is the most challenging part and is
still not completely satisfying)
we have proved the correctness of the dynamic semantics of our
syntactic model for an imperative OO language w.r.t. the standard
semantics of imperative calculi relying on a global memory
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Future work

(short term) complete the soundness proof in Coq
(short term) handle lent (borrowed) references
= the reachable graph can be manipulated, but not shared, by a
client
(long term) investigate (a form of) Hoare logic on top of our model
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