
Tracing sharing and immutability in OO
languages

Paola Giannini (Univ. Piemonte Orientale)

joint work with Tim Richter (Univ. Potsdam), Marco Servetto (Victoria Univ. of
Wellington) and Elena Zucca (Univ. Genova)

HVL, Bergen, 16 August 2018

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 1 / 29

Outline

1 Motivations

2 Modeling sharing

3 Type and effect system

4 Examples

5 Related work and conclusion

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 2 / 29

Outline

1 Motivations

2 Modeling sharing

3 Type and effect system

4 Examples

5 Related work and conclusion

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 3 / 29

Context and motivation

Design of imperative (object oriented) programming languages1

Key issue is sharing/aliasing of variables: a change to x affects y
as well (in object oriented languages variables refer to objects!)
unwanted sharing relations are common bugs: inconsistent state,
invalidation of invariants
particularly important in the concurrent/multithreaded case in
which the “heap” containing objects is shared by threads
hence: interest in type systems which statically detect (and
control) sharing and mutation

1Marco Servetto is working on the language 42 see http://l42.is/
Paola Giannini Sharing and immutability in OO languages HVL, Bergen 4 / 29

http://l42.is/

Context and motivation

Design of imperative (object oriented) programming languages1

Key issue is sharing/aliasing of variables: a change to x affects y
as well (in object oriented languages variables refer to objects!)

unwanted sharing relations are common bugs: inconsistent state,
invalidation of invariants
particularly important in the concurrent/multithreaded case in
which the “heap” containing objects is shared by threads
hence: interest in type systems which statically detect (and
control) sharing and mutation

1Marco Servetto is working on the language 42 see http://l42.is/
Paola Giannini Sharing and immutability in OO languages HVL, Bergen 4 / 29

http://l42.is/

Context and motivation

Design of imperative (object oriented) programming languages1

Key issue is sharing/aliasing of variables: a change to x affects y
as well (in object oriented languages variables refer to objects!)
unwanted sharing relations are common bugs: inconsistent state,
invalidation of invariants

particularly important in the concurrent/multithreaded case in
which the “heap” containing objects is shared by threads
hence: interest in type systems which statically detect (and
control) sharing and mutation

1Marco Servetto is working on the language 42 see http://l42.is/
Paola Giannini Sharing and immutability in OO languages HVL, Bergen 4 / 29

http://l42.is/

Context and motivation

Design of imperative (object oriented) programming languages1

Key issue is sharing/aliasing of variables: a change to x affects y
as well (in object oriented languages variables refer to objects!)
unwanted sharing relations are common bugs: inconsistent state,
invalidation of invariants
particularly important in the concurrent/multithreaded case in
which the “heap” containing objects is shared by threads

hence: interest in type systems which statically detect (and
control) sharing and mutation

1Marco Servetto is working on the language 42 see http://l42.is/
Paola Giannini Sharing and immutability in OO languages HVL, Bergen 4 / 29

http://l42.is/

Context and motivation

Design of imperative (object oriented) programming languages1

Key issue is sharing/aliasing of variables: a change to x affects y
as well (in object oriented languages variables refer to objects!)
unwanted sharing relations are common bugs: inconsistent state,
invalidation of invariants
particularly important in the concurrent/multithreaded case in
which the “heap” containing objects is shared by threads
hence: interest in type systems which statically detect (and
control) sharing and mutation

1Marco Servetto is working on the language 42 see http://l42.is/
Paola Giannini Sharing and immutability in OO languages HVL, Bergen 4 / 29

http://l42.is/

Outline

1 Motivations

2 Modeling sharing

3 Type and effect system

4 Examples

5 Related work and conclusion

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 5 / 29

Simplified Java syntax

e ::= expression
x variable
| e.f field access
| e.m(e1, . . . ,en) method call
| e.f=e′ field assignment
| new C(e1, . . . ,en) object creation
| {T1 x1=e1; . . .Tn xn=en; e} block

T ::= C | int | . . . type

md ::= T m(T ′
1 y1, . . . ,T ′

k yk){T1 x1=e1; . . .Tn xn=en; e} method definition

cd ::= class C {T1 f1; . . .Tn fn; md1 . . .mdk} class definition

We assume classes have a constructor initialising all their fields:
C(T1 f1, . . . ,Tn fn){this.f1 = f1; . . .this.fn = fn; }

in the examples we sometimes omit the outermost block.

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 6 / 29

Simplified Java syntax

e ::= expression
x variable
| e.f field access
| e.m(e1, . . . ,en) method call
| e.f=e′ field assignment
| new C(e1, . . . ,en) object creation
| {T1 x1=e1; . . .Tn xn=en; e} block

T ::= C | int | . . . type

md ::= T m(T ′
1 y1, . . . ,T ′

k yk){T1 x1=e1; . . .Tn xn=en; e} method definition

cd ::= class C {T1 f1; . . .Tn fn; md1 . . .mdk} class definition

We assume classes have a constructor initialising all their fields:
C(T1 f1, . . . ,Tn fn){this.f1 = f1; . . .this.fn = fn; }

in the examples we sometimes omit the outermost block.

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 6 / 29

Simplified Java syntax

e ::= expression
x variable
| e.f field access
| e.m(e1, . . . ,en) method call
| e.f=e′ field assignment
| new C(e1, . . . ,en) object creation
| {T1 x1=e1; . . .Tn xn=en; e} block

T ::= C | int | . . . type

md ::= T m(T ′
1 y1, . . . ,T ′

k yk){T1 x1=e1; . . .Tn xn=en; e} method definition

cd ::= class C {T1 f1; . . .Tn fn; md1 . . .mdk} class definition

We assume classes have a constructor initialising all their fields:
C(T1 f1, . . . ,Tn fn){this.f1 = f1; . . .this.fn = fn; }

in the examples we sometimes omit the outermost block.

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 6 / 29

Sharing between variables

class B { C f; } class C { int f;}

 B
	f=

x
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=5

y
=

 B
	f=

x
=

 C
	f=3

y
=

C y = new C(0); B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

 B
	f=

x
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=5

y
=

 B
	f=

x
=

 C
	f=3

y
=

C y = new C(0); B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 7 / 29

Sharing between variables

class B { C f; } class C { int f;}

 B
	f=

x
=

 C
	f=5

y
=

 C
	f=0

y
=

C y = new C(0);

C y = new C(0); B x= new B(y);

 C
	f=0

y
=

C y = new C(0) B x= new B(y)

 B
	f=

x
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=5

y
=

 B
	f=

x
=

 C
	f=3

y
=

C y = new C(0); B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

 B
	f=

x
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=5

y
=

 B
	f=

x
=

 C
	f=3

y
=

C y = new C(0); B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 7 / 29

Sharing between variables

class B { C f; } class C { int f;}

 B
	f=

x
=

 C
	f=5

y
=

 C
	f=0

y
=

C y = new C(0);

C y = new C(0); B x= new B(y);

 C
	f=0

y
=

C y = new C(0); B x= new B(y);

 B
	f=

x
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=5

y
=

 B
	f=

x
=

 C
	f=3

y
=

C y = new C(0); B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

 B
	f=

x
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=5

y
=

 B
	f=

x
=

 C
	f=3

y
=

C y = new C(0); B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 7 / 29

Sharing between variables

class B { C f; } class C { int f;}

 B
	f=

x
=

 C
	f=0

y
=

 C
	f=0

y
=

C y = new C(0);

C y = new C(0); B x= new B(y);

 C
	f=0

y
=

C y = new C(0); B x= new B(y);

 B
	f=

x
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=5

y
=

 B
	f=

x
=

 C
	f=3

y
=

C y = new C(0); B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

 B
	f=

x
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=5

y
=

 B
	f=

x
=

 C
	f=3

y
=

C y = new C(0); B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 7 / 29

Sharing between variables

class B { C f; } class C { int f;}

 B
	f=

x
=

 C
	f=0

y
=

 C
	f=0

y
=

C y = new C(0);

C y = new C(0); B x= new B(y);

 C
	f=0

y
=

C y = new C(0); B x= new B(y);

 B
	f=

x
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=5

y
=

 B
	f=

x
=

 C
	f=3

y
=

C y = new C(0); B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

 B
	f=

x
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=5

y
=

 B
	f=

x
=

 C
	f=3

y
=

C y = new C(0); B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 7 / 29

Sharing between variables

class B { C f; } class C { int f;}

 B
	f=

x
=

 C
	f=0

y
=

 C
	f=0

y
=

C y = new C(0);

C y = new C(0); B x= new B(y);

 C
	f=0

y
=

C y = new C(0); B x= new B(y);

 B
	f=

x
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=5

y
=

 B
	f=

x
=

 C
	f=3

y
=

C y = new C(0); B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

 B
	f=

x
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=5

y
=

 B
	f=

x
=

 C
	f=3

y
=

C y = new C(0); B x= new B(y);

y.f = 5; // modifies also x.f.f

x.f.f = 3; // modifies also y.f

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 7 / 29

Uniqueness and immutability

We focus on the following properties of a reference x :

Uniqueness: x denotes an isolated portion of store, called a
capsule
= the reachable subgraph cannot be reached through other (non immutable)
references
so x denotes mutable state that can be safely handled by a thread
Immutability: x denotes an immutable portion of store
= the reachable subgraph cannot be modified through any reference
x can be safely shared in a multithreading environment

In the following nodes in red refer to mutable references in green to
immmutable references and in blu to unique/capsule references.

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 8 / 29

Uniqueness and immutability

We focus on the following properties of a reference x :
Uniqueness: x denotes an isolated portion of store, called a
capsule

= the reachable subgraph cannot be reached through other (non immutable)
references
so x denotes mutable state that can be safely handled by a thread
Immutability: x denotes an immutable portion of store
= the reachable subgraph cannot be modified through any reference
x can be safely shared in a multithreading environment

In the following nodes in red refer to mutable references in green to
immmutable references and in blu to unique/capsule references.

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 8 / 29

Uniqueness and immutability

We focus on the following properties of a reference x :
Uniqueness: x denotes an isolated portion of store, called a
capsule
= the reachable subgraph cannot be reached through other (non immutable)
references

so x denotes mutable state that can be safely handled by a thread
Immutability: x denotes an immutable portion of store
= the reachable subgraph cannot be modified through any reference
x can be safely shared in a multithreading environment

In the following nodes in red refer to mutable references in green to
immmutable references and in blu to unique/capsule references.

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 8 / 29

Uniqueness and immutability

We focus on the following properties of a reference x :
Uniqueness: x denotes an isolated portion of store, called a
capsule
= the reachable subgraph cannot be reached through other (non immutable)
references
so x denotes mutable state that can be safely handled by a thread

Immutability: x denotes an immutable portion of store
= the reachable subgraph cannot be modified through any reference
x can be safely shared in a multithreading environment

In the following nodes in red refer to mutable references in green to
immmutable references and in blu to unique/capsule references.

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 8 / 29

Uniqueness and immutability

We focus on the following properties of a reference x :
Uniqueness: x denotes an isolated portion of store, called a
capsule
= the reachable subgraph cannot be reached through other (non immutable)
references
so x denotes mutable state that can be safely handled by a thread
Immutability: x denotes an immutable portion of store

= the reachable subgraph cannot be modified through any reference
x can be safely shared in a multithreading environment

In the following nodes in red refer to mutable references in green to
immmutable references and in blu to unique/capsule references.

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 8 / 29

Uniqueness and immutability

We focus on the following properties of a reference x :
Uniqueness: x denotes an isolated portion of store, called a
capsule
= the reachable subgraph cannot be reached through other (non immutable)
references
so x denotes mutable state that can be safely handled by a thread
Immutability: x denotes an immutable portion of store
= the reachable subgraph cannot be modified through any reference

x can be safely shared in a multithreading environment

In the following nodes in red refer to mutable references in green to
immmutable references and in blu to unique/capsule references.

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 8 / 29

Uniqueness and immutability

We focus on the following properties of a reference x :
Uniqueness: x denotes an isolated portion of store, called a
capsule
= the reachable subgraph cannot be reached through other (non immutable)
references
so x denotes mutable state that can be safely handled by a thread
Immutability: x denotes an immutable portion of store
= the reachable subgraph cannot be modified through any reference
x can be safely shared in a multithreading environment

In the following nodes in red refer to mutable references in green to
immmutable references and in blu to unique/capsule references.

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 8 / 29

Uniqueness and immutability

We focus on the following properties of a reference x :
Uniqueness: x denotes an isolated portion of store, called a
capsule
= the reachable subgraph cannot be reached through other (non immutable)
references
so x denotes mutable state that can be safely handled by a thread
Immutability: x denotes an immutable portion of store
= the reachable subgraph cannot be modified through any reference
x can be safely shared in a multithreading environment

In the following nodes in red refer to mutable references in green to
immmutable references and in blu to unique/capsule references.

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 8 / 29

Immutability

class D {
C f1; C f2; C f3;
D m(C z1){C x = new C(1); C y = new C(2); new D(x,y,z1);}
}

C z = new C(0);
D w = m(z);

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 9 / 29

Immutability

class D {
C f1; C f2; C f3;
D m(C z1){C x = new C(1); C y = new C(2); new D(x,y,z1);}
}

C z = new C(0);
D w = m(z);

C z = new C(0);
D w = m(z);

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 9 / 29

Immutability

class D {
C f1; C f2; C f3;
D m(C z1){C x = new C(1); C y = new C(2); new D(x,y,z1);}
}

C z = new C(0); //no z.f=… in the code
D w = m(z);

C z = new C(0);
D w = m(z);

z
=

 C
 f=0

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 9 / 29

Immutability

class D {
C f1; C f2; C f3;
D m(C z1){C x = new C(1); C y = new C(2); new D(x,y,z1);}
}

C z = new C(0);
D w = {C x=new C(1);C y=new C(2); new D(x,y,z)}

C z = new C(0);
D w = m(z);

z
=

 C
 f=0

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 9 / 29

Immutability

class D {
C f1; C f2; C f3;
D m(C z1){C x = new C(1); C y = new C(2); new D(x,y,z1);}
}

z
=

 C
 f=0

 C
 f=1

x
=

 C
 f=2

y
=

C z = new C(0);
D w ={C x=new C(1);C y=new C(2); new D(x,y,z)}
w = m(z);

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 9 / 29

Immutability

class D {
C f1; C f2; C f3;
D m(C z1){C x = new C(1); C y = new C(2); new D(x,y,z1);}
}

z
=

 C
 f=0

 C
 f=1

x
=

 C
 f=2

y
= =

 D
f1=
f2=
f3=

C z = new C(0);
D w ={C x=new C(1);C y=new C(2); new D(x,y,z)}
D w = m(z);

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 9 / 29

Immutability

class D {
C f1; C f2; C f3;
D m(C z1){C x = new C(1); C y = new C(2); new D(x,y,z1);}
}

z
=

 C
 f=0

 C
 f=1

x
=

 C
 f=2

y
= =

 D
f1=
f2=
f3=

C z = new C(0);
D w ={C x=new C(1);C y=new C(2); new D(x,y,z)}
C z = new C(0)D w = m(z);

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 9 / 29

Immutability

class D {
C f1; C f2; C f3;
D m(C z1){C x = new C(1); C y = new C(2); new D(x,y,z1);}
}

z
=

 C
 f=0

 C
 f=1

x
=

 C
 f=2

y
= =

 D
f1=
f2=
f3=

C z = new C(0);
D w ={C x=new C(1);C y=new C(2); new D(x,y,z)}
C w = m(z);

w
=

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 9 / 29

Immutability

class D {
C f1; C f2; C f3;
D m(C z1){C x = new C(1); C y = new C(2); new D(x,y,z1);}
}

z
=

 C
 f=0

 C
 f=1

x
=

 C
 f=2

y
= =

 D
f1=
f2=
f3=

C z = new C(0);
D w ={C x=new C(1);C y=new C(2); new D(x,y,z)}
C w = m(z);

w
=

Since z is immutable if there are no w.f=… also w is immutable

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 9 / 29

Immutability

class D {
C f1; C f2; C f3;
D m(C z1){C x = new C(1); C y = new C(2); new D(x,y,z1);}
}

C z = new C(0);
D w = m(z);

C z = new C(0);
D w = m(z);

z
=

 C
 f=0

 C
 f=1

x
=

 C
 f=2

y
= =

 D
f1=
f2=
f3=

w
=

Since z is immutable if there are no w.f=… also w is immutable

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 9 / 29

Uniqueness (capsule)

class D {
C f1; C f2; C f3;
D m(C z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,y);}
}

C z = new C(0);
D w = m(z);

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 10 / 29

Uniqueness (capsule)

class D {
C f1; C f2; C f3;
D m(C z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,y);}
}

C z = new C(0);
D w = m(z); w = m(z);

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 10 / 29

Uniqueness (capsule)

class D {
C f1; C f2; C f3;
D m(C z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,y);}
}

 C
 f=0

z
=

C z = new C(0);
D w = {C x=new C(z.f=z.f+1);C y=new C(z.f); new D(x,x,y)}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 10 / 29

Uniqueness (capsule)

class D {
C f1; C f2; C f3;
D m(C z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,y);}
}

 C
 f=1

z
=

C z = new C(0);
D w = {C x=new C(z.f=z.f+1);C y=new C(z.f); new D(x,x,y)}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 10 / 29

Uniqueness (capsule)

class D {
C f1; C f2; C f3;
D m(C z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,y);}
}

 C
 f=1

z
=

x
=

 C
 f=1

C z = new C(0);
D w = {C x=new C(1);C y=new C(z1.f); new D(x,x,y)}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 10 / 29

Uniqueness (capsule)

class D {
C f1; C f2; C f3;
D m(C z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,y);}
}

 C
 f=1

z
=

x
=

 C
 f=1

C z = new C(0);
D w = {C x=new C(1);C y=new C(z1.f); new D(x,x,y)}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 10 / 29

Uniqueness (capsule)

class D {
C f1; C f2; C f3;
D m(C z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,y);}
}

 C
 f=1

z
=

y
=

 C
 f=1

x
=

 C
 f=1

C z = new C(0);
D w = {C x=new C(1);C y=new C(1); new D(x,x,y)}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 10 / 29

Uniqueness (capsule)

class D {
C f1; C f2; C f3;
D m(C z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,y);}
}

 C
 f=1

z
=

y
=

 C
 f=1

 D
f1=
f2=
f3=

=
x
=

 C
 f=1

C z = new C(0);
D w = {C x=new C(1);C y=new C(1); new D(x,x,y)}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 10 / 29

Uniqueness (capsule)

class D {
C f1; C f2; C f3;
D m(C z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,y);}
}

 C
 f=1

z
=

y
=

 C
 f=1

 D
f1=
f2=
f3=

=
x
=

 C
 f=1

C z = new C(0);
D w = {C x=new C(1);C y=new C(1); new D(x,x,y)}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 10 / 29

Uniqueness (capsule)

class D {
C f1; C f2; C f3;
D m(C z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,y);}
}

 C
 f=0

z
=

w

=

y
=

 C
 f=1

 D
f1=
f2=
f3=

=
x
=

 C
 f=1

C z = new C(0);
D w = {C x=new C(1);C y=new C(1); new D(x,x,y)}

Since w is not connected to any mutable reference, then w is a capsule

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 10 / 29

Uniqueness (capsule)

class D {
C f1; C f2; C f3;
D m(C z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,y);}
}

 C
 f=0

z
=

w
=

y
=

 C
 f=1

 D
f1=
f2=
f3=

=
x
=

 C
 f=1

C z = new C(0);
D w = {C x=new C(1);C y=new C(1); new D(x,x,y)}

Since w is not connected to any mutable reference, then w is a capsule

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 10 / 29

Not a capsule

D m(D z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,z1);}

C z = new C(0);
D w = {C x=new C(z.f=z.f+1); C y=new C(z.f); new D(x,x,z)};

 C
 f=1

z
=

w
=

y
=

 C
 f=1

 D
f1=
f2=
f3=

=
x
=

 C
 f=1

The reference w is connected to a mutable reference!

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 11 / 29

Not a capsule

D m(D z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,z1);}

C z = new C(0);
D w = {C x=new C(z.f=z.f+1); C y=new C(z.f); new D(x,x,z)};

 C
 f=1

z
=

w
=

y
=

 C
 f=1

 D
f1=
f2=
f3=

=
x
=

 C
 f=1

The reference w is connected to a mutable reference!

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 11 / 29

Not a capsule

D m(D z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,z1);}

C z = new C(0);
D w = {C x=new C(z.f=z.f+1); C y=new C(z.f); new D(x,x,z)};

 C
 f=1

z
=

w
=

y
=

 C
 f=1

 D
f1=
f2=
f3=

=
x
=

 C
 f=1

The reference w is connected to a mutable reference!

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 11 / 29

Not a capsule

D m(D z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,z1);}

C z = new C(0);
D w = {C x=new C(z.f=z.f+1); C y=new C(z.f); new D(x,x,z)};

 C
 f=1

z
=

w
=

y
=

 C
 f=1

 D
f1=
f2=
f3=

=
x
=

 C
 f=1

The reference w is connected to a mutable reference!

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 11 / 29

Not a capsule

D m(D z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,z1);}

C z = new C(0);
D w = {C x=new C(z.f=z.f+1); C y=new C(z.f); new D(x,x,z)};

 C
 f=1

z
=

w
=

y
=

 C
 f=1

 D
f1=
f2=
f3=

=
x
=

 C
 f=1

The reference w is connected to a mutable reference!

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 11 / 29

The reference w is just a mutable reference

D m(D z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,z1);}

C z = new C(0);
D w = m(z);
z.f = 7; // modifies w.f3

 C
 f=1

z
=

w
=

y
=

 C
 f=1

 D
f1=
f2=
f3=

=
x
=

 C
 f=1

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 12 / 29

The reference w is just a mutable reference

D m(D z1){C x=new C(z1.f=z1.f+1); C y=new C(z1.f); new D(x,x,z1);}

C z = new C(0);
D w = m(z);
z.f = 7; // modifies w.f3

 C
 f=1

z
=

w
=

y
=

 C
 f=1

 D
f1=
f2=
f3=

=
x
=

 C
 f=1

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 12 / 29

Outline

1 Motivations

2 Modeling sharing

3 Type and effect system

4 Examples

5 Related work and conclusion

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 13 / 29

Our proposal: static checks via a type and effect
system

enrich types with type modifiers
define syntax directed rules that

1 infer sharing (possibly) introduced by the evaluation of an
expression

2 enforce the restriction that only objects referred to by mutable
references can be mutated

3 check that unique references refers to capsules

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 14 / 29

Modifiers

Types are either primitive types, like int (and then immutable), or references

µC

depending on the modifier of µ there are restrictions and assumptions
µ ::= mut no restrictions, no assumptions

| read readonly: x.f=e is not legal

| imm readonly +
the reachable subgraph will not be modified
through any other reference

| caps the reachable subgraph is a capsule
can be used at most once

caps ≤ mut ≤ read caps ≤ imm ≤ read

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 15 / 29

Modifiers

Types are either primitive types, like int (and then immutable), or references

µC

depending on the modifier of µ there are restrictions and assumptions

µ ::= mut no restrictions, no assumptions

| read readonly: x.f=e is not legal

| imm readonly +
the reachable subgraph will not be modified
through any other reference

| caps the reachable subgraph is a capsule
can be used at most once

caps ≤ mut ≤ read caps ≤ imm ≤ read

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 15 / 29

Modifiers

Types are either primitive types, like int (and then immutable), or references

µC

depending on the modifier of µ there are restrictions and assumptions
µ ::= mut no restrictions, no assumptions

| read readonly: x.f=e is not legal

| imm readonly +
the reachable subgraph will not be modified
through any other reference

| caps the reachable subgraph is a capsule
can be used at most once

caps ≤ mut ≤ read caps ≤ imm ≤ read

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 15 / 29

Modifiers

Types are either primitive types, like int (and then immutable), or references

µC

depending on the modifier of µ there are restrictions and assumptions
µ ::= mut no restrictions, no assumptions

| read readonly: x.f=e is not legal

| imm readonly +
the reachable subgraph will not be modified
through any other reference

| caps the reachable subgraph is a capsule
can be used at most once

caps ≤ mut ≤ read caps ≤ imm ≤ read

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 15 / 29

Modifiers

Types are either primitive types, like int (and then immutable), or references

µC

depending on the modifier of µ there are restrictions and assumptions
µ ::= mut no restrictions, no assumptions

| read readonly: x.f=e is not legal

| imm readonly +
the reachable subgraph will not be modified
through any other reference

| caps the reachable subgraph is a capsule
can be used at most once

caps ≤ mut ≤ read caps ≤ imm ≤ read

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 15 / 29

Modifiers

Types are either primitive types, like int (and then immutable), or references

µC

depending on the modifier of µ there are restrictions and assumptions
µ ::= mut no restrictions, no assumptions

| read readonly: x.f=e is not legal

| imm readonly +
the reachable subgraph will not be modified
through any other reference

| caps the reachable subgraph is a capsule
can be used at most once

caps ≤ mut ≤ read caps ≤ imm ≤ read

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 15 / 29

Modifiers

Types are either primitive types, like int (and then immutable), or references

µC

depending on the modifier of µ there are restrictions and assumptions
µ ::= mut no restrictions, no assumptions

| read readonly: x.f=e is not legal

| imm readonly +
the reachable subgraph will not be modified
through any other reference

| caps the reachable subgraph is a capsule
can be used at most once

caps ≤ mut ≤ read caps ≤ imm ≤ read

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 15 / 29

Computing sharing effects

define a type system to infer sharing (possibly) introduced by the
evaluation of an expression:

Γ ` e : C | S
Γ type assignment x1 : µ1 C1, . . . , xn : µn Cn
C the type (class) of the result of the expression
S sharing relation
= equivalence relation on free variables of e plus res

x and y in the same equivalence class means
evaluation of e can introduce sharing between x and y
if x is in the equivalence class of res
evaluation of e returns a reference in sharing with x

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 16 / 29

Computing sharing effects

define a type system to infer sharing (possibly) introduced by the
evaluation of an expression:

Γ ` e : C | S
Γ type assignment x1 : µ1 C1, . . . , xn : µn Cn
C the type (class) of the result of the expression
S sharing relation
= equivalence relation on free variables of e plus res

x and y in the same equivalence class means
evaluation of e can introduce sharing between x and y
if x is in the equivalence class of res
evaluation of e returns a reference in sharing with x

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 16 / 29

Computing sharing effects

define a type system to infer sharing (possibly) introduced by the
evaluation of an expression:

Γ ` e : C | S
Γ type assignment x1 : µ1 C1, . . . , xn : µn Cn
C the type (class) of the result of the expression
S sharing relation
= equivalence relation on free variables of e plus res

x and y in the same equivalence class means
evaluation of e can introduce sharing between x and y

if x is in the equivalence class of res
evaluation of e returns a reference in sharing with x

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 16 / 29

Computing sharing effects

define a type system to infer sharing (possibly) introduced by the
evaluation of an expression:

Γ ` e : C | S
Γ type assignment x1 : µ1 C1, . . . , xn : µn Cn
C the type (class) of the result of the expression
S sharing relation
= equivalence relation on free variables of e plus res

x and y in the same equivalence class means
evaluation of e can introduce sharing between x and y
if x is in the equivalence class of res
evaluation of e returns a reference in sharing with x

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 16 / 29

Operations introducing sharing between variables

field assignment

object creation

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 17 / 29

Operations introducing sharing between variables

field assignment

 B
	f=

x
=

 C
	f=3

z
=

 C
	f=0

y
=

x.f=y

{x,z},{y}

object creation

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 17 / 29

Operations introducing sharing between variables

field assignment

 B
	f=

x
=

 C
	f=3

z
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=3

z
=

 C
	f=0

y
=

x.f=y

{x,z},{y} {x,z,y,res}

object creation

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 17 / 29

Operations introducing sharing between variables

field assignment

 B
	f=

x
=

 C
	f=3

z
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=3

z
=

 C
	f=0

y
=

x.f=y

{x,z},{y} {x,z,y,res}

object creation

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 17 / 29

Operations introducing sharing between variables

field assignment

 B
	f=

x
=

 C
	f=3

z
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=3

z
=

 C
	f=0

y
=

x.f=y

{x,z},{y} {x,z,y,res}

object creation

 C
	f=3

z
=

 C
	f=0

y
=

new D(z,y)

{z},{y}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 17 / 29

Operations introducing sharing between variables

field assignment

 B
	f=

x
=

 C
	f=3

z
=

 C
	f=0

y
=

 B
	f=

x
=

 C
	f=3

z
=

 C
	f=0

y
=

x.f=y

{x,z},{y} {x,z,y,res}

object creation

 C
	f=3

z
=

 C
	f=0

y
=

 C
	f=3

z
=

 C
	f=0

y
= D

	f1=
 f2=

=

new D(z,y)

{z},{y} {z,y,res}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 17 / 29

Detecting uniqueness

uniqueness is detected when the result of an expression is disjoint from any of
its free mutable variable

formally, the equivalence class of res does not contain mutable variables in S
if class C{D f;} and class D{C f;} then

{Cw=(x.f=y); Cu=(z.f); u}
where x : D, y : C and z : D, is not a capsule since

Γ ` {Cw=(x.f=y); Cu=(z.f); u} : C | {x,y}, {z,res}

unless z is immutable

whereas
{Cw=(x.f=y); Cu=new D(new C()).f; u}

is a capsule since

Γ ` {Cw=(x.f=y); Cu=new D(new C()).f; u} : C | {x,y}, {z}, {res}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 18 / 29

Detecting uniqueness

uniqueness is detected when the result of an expression is disjoint from any of
its free mutable variable

formally, the equivalence class of res does not contain mutable variables in S

if class C{D f;} and class D{C f;} then

{Cw=(x.f=y); Cu=(z.f); u}
where x : D, y : C and z : D, is not a capsule since

Γ ` {Cw=(x.f=y); Cu=(z.f); u} : C | {x,y}, {z,res}

unless z is immutable

whereas
{Cw=(x.f=y); Cu=new D(new C()).f; u}

is a capsule since

Γ ` {Cw=(x.f=y); Cu=new D(new C()).f; u} : C | {x,y}, {z}, {res}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 18 / 29

Detecting uniqueness

uniqueness is detected when the result of an expression is disjoint from any of
its free mutable variable

formally, the equivalence class of res does not contain mutable variables in S
if class C{D f;} and class D{C f;} then

{Cw=(x.f=y); Cu=(z.f); u}
where x : D, y : C and z : D, is not a capsule since

Γ ` {Cw=(x.f=y); Cu=(z.f); u} : C | {x,y}, {z,res}

unless z is immutable

whereas
{Cw=(x.f=y); Cu=new D(new C()).f; u}

is a capsule since

Γ ` {Cw=(x.f=y); Cu=new D(new C()).f; u} : C | {x,y}, {z}, {res}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 18 / 29

Detecting uniqueness

uniqueness is detected when the result of an expression is disjoint from any of
its free mutable variable

formally, the equivalence class of res does not contain mutable variables in S
if class C{D f;} and class D{C f;} then

{Cw=(x.f=y); Cu=(z.f); u}

where x : D, y : C and z : D, is not a capsule since

Γ ` {Cw=(x.f=y); Cu=(z.f); u} : C | {x,y}, {z,res}

unless z is immutable

whereas
{Cw=(x.f=y); Cu=new D(new C()).f; u}

is a capsule since

Γ ` {Cw=(x.f=y); Cu=new D(new C()).f; u} : C | {x,y}, {z}, {res}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 18 / 29

Detecting uniqueness

uniqueness is detected when the result of an expression is disjoint from any of
its free mutable variable

formally, the equivalence class of res does not contain mutable variables in S
if class C{D f;} and class D{C f;} then

{Cw=(x.f=y); Cu=(z.f); u}
where x : D, y : C and z : D, is not a capsule

since

Γ ` {Cw=(x.f=y); Cu=(z.f); u} : C | {x,y}, {z,res}

unless z is immutable

whereas
{Cw=(x.f=y); Cu=new D(new C()).f; u}

is a capsule since

Γ ` {Cw=(x.f=y); Cu=new D(new C()).f; u} : C | {x,y}, {z}, {res}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 18 / 29

Detecting uniqueness

uniqueness is detected when the result of an expression is disjoint from any of
its free mutable variable

formally, the equivalence class of res does not contain mutable variables in S
if class C{D f;} and class D{C f;} then

{Cw=(x.f=y); Cu=(z.f); u}
where x : D, y : C and z : D, is not a capsule since

Γ ` {Cw=(x.f=y); Cu=(z.f); u} : C | {x,y}, {z,res}

unless z is immutable

whereas
{Cw=(x.f=y); Cu=new D(new C()).f; u}

is a capsule since

Γ ` {Cw=(x.f=y); Cu=new D(new C()).f; u} : C | {x,y}, {z}, {res}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 18 / 29

Detecting uniqueness

uniqueness is detected when the result of an expression is disjoint from any of
its free mutable variable

formally, the equivalence class of res does not contain mutable variables in S
if class C{D f;} and class D{C f;} then

{Cw=(x.f=y); Cu=(z.f); u}
where x : D, y : C and z : D, is not a capsule since

Γ ` {Cw=(x.f=y); Cu=(z.f); u} : C | {x,y}, {z,res}

unless z is immutable

whereas
{Cw=(x.f=y); Cu=new D(new C()).f; u}

is a capsule since

Γ ` {Cw=(x.f=y); Cu=new D(new C()).f; u} : C | {x,y}, {z}, {res}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 18 / 29

Detecting uniqueness

uniqueness is detected when the result of an expression is disjoint from any of
its free mutable variable

formally, the equivalence class of res does not contain mutable variables in S
if class C{D f;} and class D{C f;} then

{Cw=(x.f=y); Cu=(z.f); u}
where x : D, y : C and z : D, is not a capsule since

Γ ` {Cw=(x.f=y); Cu=(z.f); u} : C | {x,y}, {z,res}

unless z is immutable

whereas
{Cw=(x.f=y); Cu=new D(new C()).f; u}

is a capsule

since

Γ ` {Cw=(x.f=y); Cu=new D(new C()).f; u} : C | {x,y}, {z}, {res}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 18 / 29

Detecting uniqueness

uniqueness is detected when the result of an expression is disjoint from any of
its free mutable variable

formally, the equivalence class of res does not contain mutable variables in S
if class C{D f;} and class D{C f;} then

{Cw=(x.f=y); Cu=(z.f); u}
where x : D, y : C and z : D, is not a capsule since

Γ ` {Cw=(x.f=y); Cu=(z.f); u} : C | {x,y}, {z,res}

unless z is immutable

whereas
{Cw=(x.f=y); Cu=new D(new C()).f; u}

is a capsule since

Γ ` {Cw=(x.f=y); Cu=new D(new C()).f; u} : C | {x,y}, {z}, {res}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 18 / 29

Detecting uniqueness

uniqueness is detected when the result of an expression is disjoint from any of
its free mutable variable

formally, the equivalence class of res does not contain mutable variables in S
if class C{D f;} and class D{C f;} then

{Cw=(x.f=y); Cu=(z.f); u}
where x : D, y : C and z : D, is not a capsule since

Γ ` {Cw=(x.f=y); Cu=(z.f); u} : C | {x,y}, {z,res}

unless z is immutable

whereas
{Cw=(x.f=y); Cu=new D(new C()).f; u}

is a capsule since

Γ ` {Cw=(x.f=y); Cu=new D(new C()).f; u} : C | {x,y}, {z}, {res}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 18 / 29

Outline

1 Motivations

2 Modeling sharing

3 Type and effect system

4 Examples

5 Related work and conclusion

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 19 / 29

Programming examples

modifier of this in violet

class List { ...

caps List deepcopy(read)/*{this}, {res}*/{ ... }

mut List concat (mut, read List other)
/*{this,res,other}*/{ ... }

caps List concatcopy (read, read List other)
/*{this}, {res}, {other}*/{ ... }

}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 20 / 29

Programming examples

modifier of this in violet

class List { ...

caps List deepcopy(read)/*{this}, {res}*/{ ... }

mut List concat (mut, read List other)
/*{this,res,other}*/{ ... }

caps List concatcopy (read, read List other)
/*{this}, {res}, {other}*/{ ... }

}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 20 / 29

Programming examples

class IntListReader {
static caps IntList readIntList (mut Scanner s) /*{s}, {res}*/{

mut IntList list=new IntList()
while(s.hasNextNum()){
list.addInt(s.nextNum())

}
return list// capsule recovery

}
}

class Scanner { ...
boolean hasNextNum (read)
int nextNum (mut)

}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 21 / 29

Programming examples

class IntListReader {...//as before
static caps IntList update(caps IntList old, mut Scanner s)
/*{s}, {res}*/ {
mut IntList list=old//we open the capsule ‘old’
while(s.hasNextNum()){
list.addInt(s.nextNum())

}
return list

}
}

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 22 / 29

Programming examples

class Person{
private mut PersonList friends;
read PersonList readFriends (read)/*{this,res}*/{

return this.friends;
}
mut PersonList getFriends (mut)/*{this,res}*/{

return this.friends;
}

}

two getter methods with different type annotations:
p.readFriends() can be invoked on any p, imm if p is imm
p.getFriends() p cannot be read or imm

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 23 / 29

Programming examples

class Person{
private mut PersonList friends;
read PersonList readFriends (read)/*{this,res}*/{

return this.friends;
}
mut PersonList getFriends (mut)/*{this,res}*/{

return this.friends;
}

}

two getter methods with different type annotations:

p.readFriends() can be invoked on any p, imm if p is imm
p.getFriends() p cannot be read or imm

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 23 / 29

Programming examples

class Person{
private mut PersonList friends;
read PersonList readFriends (read)/*{this,res}*/{

return this.friends;
}
mut PersonList getFriends (mut)/*{this,res}*/{

return this.friends;
}

}

two getter methods with different type annotations:
p.readFriends() can be invoked on any p, imm if p is imm

p.getFriends() p cannot be read or imm

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 23 / 29

Programming examples

class Person{
private mut PersonList friends;
read PersonList readFriends (read)/*{this,res}*/{

return this.friends;
}
mut PersonList getFriends (mut)/*{this,res}*/{

return this.friends;
}

}

two getter methods with different type annotations:
p.readFriends() can be invoked on any p, imm if p is imm
p.getFriends() p cannot be read or imm

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 23 / 29

Outline

1 Motivations

2 Modeling sharing

3 Type and effect system

4 Examples

5 Related work and conclusion

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 24 / 29

(Some) related work

(variants of) capsule property:
isolated [Gordon et al. OOPSLA’12]

external uniqueness [Clarke&Wrigstadt ECOOP’03]

balloon [Almeida ECOOP’97, Servetto et al. WODET’14]

island [Dietl et al. ECOOP’07]

ownership: x is “owned” by y , always true, capsule notion more dynamic

types as compositions of capabilities
[Haller&Odersky ECOOP’10, Clebsch et al. AGERE’15,Castegren&Wrigstad ECOOP’16]

the Rust language rust-lang.org

the Pony language ponylang.org

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 25 / 29

Conclusions

type and effect system which infers sharing possibly introduced by
the evaluation of an expression

very expressive
we have a formalisation in Coq of the typing and the evaluation
(modelling sharing relations is the most challenging part and is
still not completely satisfying)
we have proved the correctness of the dynamic semantics of our
syntactic model for an imperative OO language w.r.t. the standard
semantics of imperative calculi relying on a global memory

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 26 / 29

Conclusions

type and effect system which infers sharing possibly introduced by
the evaluation of an expression
very expressive

we have a formalisation in Coq of the typing and the evaluation
(modelling sharing relations is the most challenging part and is
still not completely satisfying)
we have proved the correctness of the dynamic semantics of our
syntactic model for an imperative OO language w.r.t. the standard
semantics of imperative calculi relying on a global memory

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 26 / 29

Conclusions

type and effect system which infers sharing possibly introduced by
the evaluation of an expression
very expressive
we have a formalisation in Coq of the typing and the evaluation
(modelling sharing relations is the most challenging part and is
still not completely satisfying)

we have proved the correctness of the dynamic semantics of our
syntactic model for an imperative OO language w.r.t. the standard
semantics of imperative calculi relying on a global memory

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 26 / 29

Conclusions

type and effect system which infers sharing possibly introduced by
the evaluation of an expression
very expressive
we have a formalisation in Coq of the typing and the evaluation
(modelling sharing relations is the most challenging part and is
still not completely satisfying)
we have proved the correctness of the dynamic semantics of our
syntactic model for an imperative OO language w.r.t. the standard
semantics of imperative calculi relying on a global memory

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 26 / 29

Future work

(short term) complete the soundness proof in Coq
(short term) handle lent (borrowed) references
= the reachable graph can be manipulated, but not shared, by a
client
(long term) investigate (a form of) Hoare logic on top of our model

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 27 / 29

Future work

(short term) complete the soundness proof in Coq

(short term) handle lent (borrowed) references
= the reachable graph can be manipulated, but not shared, by a
client
(long term) investigate (a form of) Hoare logic on top of our model

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 27 / 29

Future work

(short term) complete the soundness proof in Coq
(short term) handle lent (borrowed) references
= the reachable graph can be manipulated, but not shared, by a
client

(long term) investigate (a form of) Hoare logic on top of our model

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 27 / 29

Future work

(short term) complete the soundness proof in Coq
(short term) handle lent (borrowed) references
= the reachable graph can be manipulated, but not shared, by a
client
(long term) investigate (a form of) Hoare logic on top of our model

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 27 / 29

References

Paola Giannini, Marco Servetto, and Elena Zucca.
Types for immutability and aliasing control.
In ICTCS 16, volume 1720 of CEUR Workshop Proceedings, pages 62–74. CEUR-WS.org,
2016.

Paola Giannini, Marco Servetto, and Elena Zucca.
Tracing sharing in an imperative pure calculus: extended abstract.
In FTfJP’17 - Formal Techniques for Java-like Programs, pages 6:1–6:6, 2017.

Paola Giannini, Marco Servetto, and Elena Zucca.
A type and effect system for sharing.
In Proceedings of the Symposium on Applied Computing, SAC 2017, Marrakech, Morocco,
April 3-7, 2017, pages 1513–1515, 2017.

Paola Giannini, Marco Servetto, and Elena Zucca.
A type and effect system for uniqueness and immutability.
In Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018,
Pau, France, April 09-13, 2018, pages 1038–1045, 2018.

Paola Giannini, Tim Richter, Marco Servetto, and Elena Zucca.
Tracing sharing in an imperative pure calculus.
CoRR, abs/1803.05838, 2018.

Paola Giannini, Marco Servetto, Elena Zucca, and James Cone.
Flexible recovery of uniqueness and immutability (extended version).
CoRR, abs/1807.00137, 2018.

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 28 / 29

Thanks

Paola Giannini Sharing and immutability in OO languages HVL, Bergen 29 / 29

	Motivations
	Modeling sharing
	Type and effect system
	Examples
	Related work and conclusion

