
Bergen University College

Master Thesis

Model to Model Transformation Tool for
the DPF Workbench

Author:

Petter Barvik

Supervisor:

Yngve Lamo

Department of Informatics

University of Bergen

Department of Computer Engineering

Bergen University College

October 2013

BERGEN UNIVERSITY COLLEGE

Abstract

Department of Computing, Mathematics and Physics

Master of Computer Sience

Model to Model Transformation Tool for the DPF Workbench

by Petter Barvik

Model transformations has a major part in Model Driven Development. This thesis
presents the DPF Transformation Editor, an extension to the DPF Workbench that
specifies model to model transformations for DPF specifications. There are quite the
collection of model transformation environments with diverse approaches to model trans-
formations. The purpose of this thesis is to see if we can integrate an existing model
transformation environment with DPF that supports translations between di↵erent mod-
eling languages. Some of these approaches to model transformations are explored in a
comparison of three model transformation environments: 1) Henshin representing tra-
ditional graph transformation on Ecore models, 2) Attributed Graph Grammar (AGG)
representing traditional graph transformation, and 3) Atlas Transformation Language
(ATL) representing model transformation on Ecore models. Our case study involves a
specific exogenous model transformation that translates an UML activity diagram to
a Petri Net model. The main focus with this comparison is to find a transformation
language that together with the DPF Transformation Editor provides a viable solution
to model to model transformations for DPF specifications.

Acknowledgements

The acknowledgements and the people to thank go here, don’t forget to include your

project advisor. . .

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables viii

Abbreviations ix

1 Introduction 1

1.1 Motivation . 1

1.2 The structure of the Thesis . 2

2 Background 3

2.1 Model Driven Engineering . 3

2.1.1 Model Driven Architecture . 5

2.2 Modeling Languages . 8

2.2.1 Meta-modeling . 9

2.2.2 Constraints . 11

2.3 Language Workbenches . 12

2.3.1 EMF . 13

2.4 Diagram Predicate Framework . 14

2.5 DPF Workbench . 17

3 Model Transformation 19

3.1 Basic concepts of model transformation 19

3.1.1 Layer of Abstractions . 20

3.2 Model Transformations in MDE . 22

3.3 Existing Environments . 23

3.4 Classification of a model transformation 25

3.4.1 Specification . 26

3.4.2 Transformation Rules . 26

3.4.3 Rule Application Control . 28

3.4.4 Rule Organization . 29

iii

Contents iv

3.4.5 Source - Target Relationship . 29

3.4.6 Directionality . 30

3.4.7 Tracing . 30

3.5 Graph based Approach to Model Transformations 31

3.5.1 The Algebraic Approach . 33

3.5.2 Transformation Rules . 33

3.5.3 Application Control . 33

3.5.4 Execution of rules . 34

4 Problem Specification 37

4.1 Problem Specification . 37

4.2 Three di↵erent model transformation environments 39

4.2.1 The Attributed Graph Grammar System 40

4.2.2 The Henshin Project . 45

4.2.3 ATL Transformation Language . 50

4.3 Model transformation environment for DPF 56

5 Problem Solution 59

5.1 Integrate Henshin with DPF . 59

5.2 Henshin meta-model . 61

5.3 DPF Transformation Editor . 63

5.4 Generate Correspondence Graph . 65

5.5 Generate Henshin Rules . 66

5.5.1 Traceable links . 69

5.6 Apply Model Transformation . 70

5.6.1 Rule Application Control . 70

5.6.2 The Transformed Model . 71

6 Evaluation 72

6.1 Evaluation of Solution . 72

6.2 Test case with the DPF Transformation Editor 73

6.3 Comparison with other editor tools . 73

6.3.1 Editing Transformation Rules . 75

6.3.2 Meta-modeling . 76

6.3.3 Transformation Rules . 77

6.3.4 Rule Scheduling . 77

6.3.5 Rule Organization . 78

6.3.6 Source - Target Relationship . 79

6.3.7 Directionality . 79

6.3.8 Tracing . 80

6.3.9 Translating the instance model . 80

7 Conclusion 82

7.1 Future Work . 83

7.1.1 Endogenous Model Transformations 83

7.1.2 Making the Model Transformations constraint aware 83

7.1.3 Verification of target modeling formalism predicates 84

Contents v

Bibliography 85

List of Figures

2.1 Rational Unified Process . 4

2.2 Software Development with MDA . 6

2.3 The three levels of modeling abstraction for MDA 7

2.4 Main ingredients of a modeling lanugage. 8

2.5 Example of a model and meta-model . 9

2.6 Meta Object Facility . 10

2.7 Simple model with constraints . 11

2.8 Intended use of language workbenches . 13

2.9 Components of language workbenches . 13

2.10 Ecore model represented by Ecore Tools 14

2.11 A specification and some predefined diagrammatic predicate attached . . 15

2.12 Modeling formalism in DPF . 16

2.13 OMG’s layers of meta-modeling and multilayer modeling 17

2.14 DPF Editor in multi-layer meta-modeling hierarchy 18

3.1 Basic Model Transformation . 20

3.2 Vertical and Horizontal model transformations 22

3.3 Model Transformations in MDA . 23

3.4 Domain Analysis of Model Transformations 25

3.5 Feature diagram for transformation rules 26

3.6 Feature diagram a domain . 26

3.7 Category Theory . 32

3.8 Basic concepts of graph homomorphism 32

3.9 Idea of graph transformation . 34

3.10 The Double Pushout approach . 34

3.11 A Negative application condition . 35

3.12 The Double Pushout approach with NAC 36

4.1 Specification relationship with core meta-model 38

4.2 Abstract syntax of the source model . 39

4.3 Abstract syntax of the target model . 40

4.4 Graphical Editor for AGG . 41

4.5 Type graph in AGG . 42

4.6 Tree based editor in AGG . 43

4.7 Representation of a rule in AGG . 44

4.8 The Henshin Model Editor . 46

4.9 The Henshin graphical editor . 48

4.10 A Sequential Unit in Henshin . 49

vi

List of Figures vii

4.11 Model transformation for Atlas transformation language 51

4.12 Simple rules for ATL . 52

4.13 Example of a matched rule in ATL . 54

4.14 Internal infrastructure for ATL . 55

4.15 Proposed solution for integration of AGG 56

5.1 Integrating Henshin with DPF . 59

5.2 Work flow for the solution . 60

5.3 Henshin meta-model for a transformation rule 61

5.4 Henshin relationship with Ecore . 62

5.5 Model for the DPF Transformation Editor 63

5.6 The three subgraphs for a transformation rule. 64

5.7 Specification for the correspondence objects 65

5.8 Relationship between node and arrow in DPF 67

5.9 How we want to handled types for a DPF model 68

5.10 How to handle node types for a rule in Henshin 68

5.11 The transformed specification . 71

6.1 Simplified joined specification . 73

7.1 Simplified joined specification . 84

List of Tables

3.1 Example model transformations. 21

6.1 Comparing model transformation tools. 74

viii

Abbreviations

EMF Eclipse Modelling Framework

EMP Eclipse Modelling Project

GEF Graphical Editing Framework

SPO Single Pushout Approach

DPO Double Pushout Approach

NAC Negative Application Condition

PAC Positive Application Condition

LHS Left Hand Side

RHS Right Hand Side

DPF Diagram Predicate Framework

MDE Model Driven Engineering

UML Unified Modeling Language

RUP Rational Unified Process

DSML Domain Specific Modeling Language

CIM Computation-Independent Model

PIM Platform-Independent Model

PSM Platform-Specific Model

OMG Object Management Group

MOF Meta Object Facility

OCL Object Constraint Language

CPU Central Processing Unit

ATL ATLAS Transformation Language

MDA Model Driven Architecture

AGG Attributed Graph Grammer

QVT Query View Transformation

ix

Abbreviations x

MDSE Model Driven Software Engineering

MMT Model-to-Model Transformation

For/Dedicated to/To my. . .

xi

Chapter 1

Introduction

1.1 Motivation

Model Driven Engineering (MDE) has been around for quite some time now and is by no
references new to computer science. The use of miniatures or a visual representation of a
system to provide a explanation of some problem has always been around. To be able to
draw an abstraction of a complex system or problem on a piece of paper to supplement a
explanation often tends to make the explanation easier to understand. The explanation
does not necessary have to be di�cult to understand, but a miniature or a model will
make the explanation easier to understand. This was how i experienced the use of models
during my bachelor period. That they were meant to represent abstractions of systems
and programs.

When i started to work on my master program we started to visit more concepts around
MDE and how we can use models and model transformations to automate a software ap-
plication process. The first tools that supported this vision of MDE were the Computer-
Aided Software Engineering (CASE) and was developed in the 1980s. Tools like CASE
thrived to achieve this vision of MDE to be a fully usable approach to software develop-
ment. This meant to use models as the major artifact in a software application. Where
in the initially phases of a software development models would provide an abstraction
of the problem and evolve with more details through the development process. These
models would evolve to more specific technology based abstractions with the help of
model transformations and in the end fully executable software implementation of the
application would be generated.

As the years went by MDE has become a strong foundation to create domain specific
modeling languages. With the possibility to define meta-models with constraints proved
to be a viable solution to create the structure of a modeling language or a specific
modeling language. Based on this the Object Management Group (OMG) created the
Unified Modeling Language[1] (UML) that became a standard for creating modeling
languages. Many modeling tools adapts UML in the process of creating a domain specific
modeling environment.

1

Chapter 1. Motivation 2

Lately a diagrammatic approach to utilize the visions of MDE has become more popular
amongst MDE researchers. Where the focus is more on graphs and graph theory. The
Diagram Predicate Framework (DPF) is such a framework that take advantage of cate-
gory theory and graph transformations to provide a formal approach to meta-modeling,
model transformation and model management. For this thesis we have the following
research question, Can we extend the DPF Workbench with an editor that support model
to model transformations between di↵erent Domain Specific Modeling Languages.

1.2 The structure of the Thesis

This thesis is structured with the following sections.

Chapter 2. This chapter is meant to explain background material to this thesis. Where
we discuss the visions of model driven engineering. We also consider a specific
design approach to these visions. Then we discuss modeling languages and their
role in language workbenches. At the end of the chapter we go into detail on the
DPF environment.

Chapter 3. This chapter introduces model transformation in general. We discuss the
basic concepts of model transformations and how they are used in MDE. Later in
the chapter we try to classify model to model transformations and explain design
choices behind the graph based approach to achieve this.

Chapter 4. In chapter 4 we describe the problem at hand and how we want to approach
this. We consider three di↵erent model transformation tools and find the tool that
is best suited to be integrated with DPF.

Chapter 5. This chapter describes how we created a model to model transformation
environment for the framework. We describe the model transformation environ-
ment we integrated with DPF and how this works with the transformation editor.

Chapter 6. Here we want evaluate our solution and also discuss functionality that
should be included in future versions of the tool. Then we want to compare our
solution with existing transformation tools and provide a conclusion at the end.

Chapter 7. In this chapter we provide a conclusion for this master thesis. We also
mention some future work for the transformation tool.

Chapter 2

Background

2.1 Model Driven Engineering

When a new software is created it has always been a goal to produce high quality code
at the lowest possible cost. To plan a software development project from its initial start
to delivering a finished product can seem like an impossible thing to do. Because a
software development cycle rarely goes as initially planned. Changes do occur, both
in delivering high quality code and keeping the costs down. Traditionally when model
driven engineering (MDE) is used, people think about models, for example activity
diagrams and class diagrams from the popular modeling language, UML. Where models
is used to raise the level of abstraction for the problem specification and describing how
a software should be implemented. For these software development processes models are
indirectly used in the creation of software. This means that models are primarily used
as a reference when implementing an application.

A model is an abstraction of a system, and has its origin from Latin, modulus that
means measure or standard. A model can either be used to represent a system before
it is created or to describe some major aspects of a system or a concept. When we hear
the term model, many will think that it is a miniature that consists of a set of nodes
and arrows. But it is important to consider that a model can also be represented by
text.

If we consider traditionally software development processes, then models are primar-
ily used in application requirements and use-case diagrams specify what the costumer
wants. Then developers can specify models to detect important functionality of the
application. The software developer may for example create flow charts, sequence di-
agrams, activity diagrams, class diagrams, etc, to describe how the system should be
implemented. A model for system architecture can also be initialized for developers to
handle design choices. Rational Unified Process[2] (RUP) is an example of a software
development process that is build around extensive use of models in their initial planning
phase. RUP was initially created by Rational Software Corporation[3] in 2006 and was
later acquired by International Business Machines Corporation[4]. This is an iterative
software development process and the purpose of RUP is to be an adaptable process
framework where the software project teams decide the elements that are required for
a development cycle. Figure 2.1 explains the four di↵erent phases, Inception, Elabo-
ration, Construction and Transition, with di↵erent iterations for each phase that RUP

3

Chapter 2. Background 4

provides. The Inception phase and the Elaboration phase is the two phases where some
of the example models above are created, both under business modeling and require-
ments. For the Inception phase of RUP, the idea is to create the software application
without writing any source code. This phase is concerned with writing text and creating
models that gives the developers a detailed specification on how the program should be
implemented. In the Elaboration phase a prototype might be implemented to show the
customer a possible implementation, but this phase also consist of creating and mod-
ifying an extensive amount text and models that specifies analysis and design choices.
The Elaboration phase focus on designing the architecture for the software application.
The goal for these two phases is to define a solid foundation of the application before
starting with the implementation and testing. In the Construction phase the developers
should know exactly how the application should be implemented by referring to docu-
ments and models created in earlier phases. RUP is only one example of how a software
development process could be applied to a project. Agile development processes has
become popular the last couple of years, where processes like Scrum[5] and Extreme
Programming[6] (XP) has been integrated in software development teams all over the
world. Both Scrum and XP thrives to focus more on the implementation and on deliv-
ering high quality code than creating documents and models. But models will always
be a tool for developers, also in agile development processes, when some aspects of a
system needs to be explained. Because to explain parts of an implementation with a
model will help to make the explanation less complex and more abstract.

Figure 2.1: Iterative development cycle of Rational Unified Process.

Now we have acknowledged some development processes that are commonly used in
the industry for creating software applications. Model Driven Engineering is a software
development methodology which focuses on creating and exploiting models. And by
using these models, MDE aims at improving productivity and quality in software de-
velopment. This is achieved by not only to use models as documentation, but instead
to use models as the major artifact in a software development cycle. The idea is to use
models at di↵erent levels of abstraction and apply model transformations to automate
the implementation of these models. This will raise the level of abstraction in program
and problem specification. We can divide these models into two main model classes,
namely development models and runtime models. Development models is used as an
abstraction above code level. These models could represent software requirements, work
flow, architecture and software implementation. These development models are most
typically used in software development process that we described above as a supplement

Chapter 2. Background 5

in developing an application. Runtime models represents executable systems of a soft-
ware application. Example of such executable systems could be database operations or
computations of data. There has been an increase in MDE researchers that explore how
runtime models can be used to support dynamic adaptation of systems for a software
application[7]. The idea for MDE is to be able to specify these development models as
runtime models and evolve software applications with the use of runtime models and
development models as major artifacts of a development process.

A typical Model Driven Software Engineering (MDSE) approach is to obtain the run-
ning software application through model transformations that produce a more and more
detailed version of the application until an executable version is created. We reach this
level of automation by applying model transformations to models at higher levels of ab-
straction and producing models that contains a more and more detailed description of
the software. This highlights one main advantage of a model driven approach, and that is
to bridge the communication gap between requirements/analysis and implementation[8].
For a traditional development process today there is a gap in communication between
software developers and customers. Because a customer is usually not an expert in
designing and implementing a software application. A customer can provide a set of
requirements for a software application and take part in analysing these requirements
to make sure that the development team shares the customers thought of the program.
The requirements and analysis can be specified down to every detail, however a software
application might experience di↵erent design choices that leads to a di↵erent implemen-
tation of the application compared what a business needs. If the visions of MDE is
adopted to a software development process then this could help to narrow the gap in
communication between developers and stakeholders. Because now we can apply model
transformation that changes input models to target models that represents the design of
a software application. From these design models we can then generate implementation
code through the use of model transformations. We will describe model transformations
and their purpose in model driven engineering in more depths in chapter 3. To use mod-
els at each level of abstraction is less complex than implementation code. This represents
another benefit of adopting MDSE into the development process. Because models cap-
tures and organize the understanding of a system that results in a more clear discussions
among team members and new team members. One approach that introduces modeling
at di↵erent level of abstraction for including MDSE in a software development process
is the Model Driven Architecture.

2.1.1 Model Driven Architecture

Model Driven Architecture (MDA) is an industry architecture developed by the Object
Management Group (OMG) and address an application development cycle. MDA is a
proposal for applying the practices of MDE to a system development. This architecture is
a good example to use when we are discussing concepts of MDE, because of its similarity
to a traditional software development process. Since it has support for standard phases
in a software development process such as analysis, design and implementation. Many
organizations have adopted MDA as a reference framework to include the concepts of
MDE. One reason for this is the importance of OMG in for the software industry. MDA
is build around many concepts that OMG has released, such as the OMG specifications
the Unified Modeling Language (UML) and the Meta Object Facility(MOF).

Chapter 2. Background 6

Figure 2.2: a) Model-Driven-Architecture and b) Traditional development process

Figure 2.2 gives a representation of the development process that the Model Driven Ar-
chitecture provides and a traditional development process. Both of the approaches have
similar starting phases, where a customer presents a list of requirements for a software
application. The process to create implementation code from the requirements is where
a MDE approach to software development is di↵erent. Because for MDA the idea is
to use models instead of text and diagrams for the analysis and design phase. For a
traditional development process these phases usually consist of creating diagrams that
describes parts of the application. In MDA these diagrams or models are the main
artifact for the corresponding phases, instead of just a reference for developers to use
when implementing code. The architecture then generates implementation code based
on these models. A traditional software development process would have iterations for
the implementation and testing to make sure that the application meets the demands of
the customer. This process is continued for every iteration, where developers continually
use the text and diagrams that was created earlier in the process. The idea for an MDA
development process is to provide automation between models created at each develop-
ment phase. Instead of going back to the code and to corrections and modifications on
the application a model driven software development process goes back to analysing the
problem and modify the models accordingly. With the power of automatically changing
models from one phase to another and generate implementation code from the models
at the last level of abstraction.

Figure 2.3 provides a representation of the models at the di↵erent layer of abstractions
that is part of the Model Driven Architecture.

Computation-Independent Model (CIM) is the most abstract level of modeling and
is often referred to as a business model or domain model. The model does not contain any
computational implications to how the software application should behave, but express
exactly what the final application should do. This model remains independent to how a
system will be or currently is implemented and represents the requirements and purpose

Chapter 2. Background 7

of the system. A Computation-Independent Model is often described by using a natural
language to define the requirements for a software application.

Figure 2.3: The three levels of modeling abstraction that MDA provides.

Platform-Independent Model (PIM) is the level of abstraction that describes the
behavior and structure of a software application. This model is platform independent,
and that means that a implementation platform is not specified. This means that the
technological platform used to implement the software application is not defined. A
Platform-Independent Model will only address tasks that a software application can
perform. These tasks are part of the context of the business model at the top level of
abstraction.

Platform-Specific Model (PSM) is the level of abstraction that contains all required
information for the behavior and structure of a software application that is linked to a
specific technological platform. These specific platform technologies can be a specific
programming language like a general purpose programming language, a specific opera-
tion system or a specific database technology. The Platform-Specific Model contains all
the information that is required for an actual implementation of the application.

In MDA, the core activity is the starting phase, which is the way analysis is conducted.
Requirements are firstly defined and modeled as a CIM or a PIM. The CIM and PIM
provides the solution for the requirements at a very high level of abstraction. At the
computation independent level of abstraction we provide the requirements of a solution
without thinking about the actual implementation of an application. A CIM could not
only specify how an application should behave to di↵erent situations, but could also
specify how the end users utilizes the application. For example the model could define
the requirements for a web application that provides a collection of goods that the end
users can purchase. These requirements could specify how an employee performs tasks
when a new order arrives. For a solution to an application not all of these requirements

Chapter 2. Background 8

are necessary for the implementation. The meaning of MDA is that models created at
CIM level provides the highest level of abstraction and therefore should be readable for
everyone. In figure 2.3 model MDA suggest that new models are created accordingly
from a set of mappings. Models that is provided at the platform independent abstraction
is not concerned with technologies that should be used for the actual implementation.
PSM is more concerned with describing what tasks an application should perform. But
tasks that an employee should perform, like for example making a shipment ready for
transportation is not defined in a PIM. A platform specific model specifies what im-
plementation platform and a set of precise descriptions of the technical details of the
corresponding implementation platform. Mapping a model to another model is essential
for applying MDA to a development process. A mapping defines correspondences be-
tween elements of two di↵erent models and can be defined between all di↵erent models.
These three models with mapping between them makes for excellent design choices to
create an environment that specifies modeling languages.

2.2 Modeling Languages

A Modeling language is defined through three core concepts. Regardless if its either a
Domain Specific Modeling Language (DSML) or a General Purpose Modeling Language
(GPML). Figure 2.4 represents the three main ingredients for a modeling language.

Figure 2.4: The three main ingredients of a modeling language.

A modeling language has an abstract and a concrete syntax. The abstract syntax de-
scribes the structure of the modeling language and how modeling elements can be com-
bined together. The concrete syntax on the other hand describes a specific representation
of the abstract syntax, and can be either be a graphical or textual representation. The
semantics of a modeling language describes the meaning of these modeling elements
and the di↵erent ways to combine them for the abstract syntax and indirectly the con-
crete syntax. We mentioned DSML and GPML, where these two modeling languages
represents one of the main classification of modeling languages. A modeling language
can either be classified as a domain specific or a general purpose language. DSMLs
are modeling languages that are designed for a specific domain or a concept. While
GPMLs are modeling languages that is applicable for several di↵erent domains. A gen-
eral purpose language lacks features that are special for a particular domain. This is
one of the strengths for DSLs that is created especially for a certain domain, and there-
fore provide more details to a specific domain compared to a general purpose language.
The Unified Modeling Language[1, 9] (UML) is an example of a standardized general-
purpose modeling language that was accepted in 2000 by the International Organization
for Standardization (ISO) as an industry standard for modeling software systems. UML

Chapter 2. Background 9

was initially developed by Grady Booch, Ivar Jacobsen and James Rumbaugh at Ra-
tional Software in the 1990s. It was later adopted by the Object Management Group
in 1997 and has since this day been continuously developed by the organisation. UML
is often called a general purpose language because it is often referred to as a suite of
languages, since it provides developers and designers with the possibility to specify ap-
plications through several di↵erent modeling languages, or diagram types that UML
often is associated with. However, in the book, “Model-Driven Software Engineering
in Practice” published by Marco Brambilla, Jordi Cabot and Manuel Wimmer in 2012,
they state the following. If we think to the general modeling problem, we can see UML
as a DSL tailored to the specification of (mainly object-oriented) software systems[10].
This means that to decide whether UML is a DSL or a GPL is not a binary choice.
But we mostly see UML as a general purpose modeling language, since it o↵ers a wide
variety of modeling languages that designers and developers can use to specify system
abstractions. Whether a modeling language is classified as a general purpose or a do-
main specific modeling language it requires that it is described by an abstract syntax.
Both the abstract syntax and the concrete syntax of a modeling language is represented
as models. Therefore the specification of the abstract syntax is often referred to as a
meta-model.

2.2.1 Meta-modeling

Models are a major artifact in the concept of model driven engineering (MDE). It is
essential to look at every model as instances of some more abstract model. And therefore
we can define a meta-model as yet another abstraction that highlights properties of
an instance model. Meta-modeling represents a vital part of MDE and constitutes
the definition of a modeling language. A meta-model defines the abstract syntax and
provides a description of a modeling language. Another popular definition for describing
a meta-modeling is that it is a “model of models”. This definition is both unhelpful
and incorrect according to Steve Cook and Stuart Kent in their paper[11] published in
2008. They think that a better definition for a meta-model is that “it is a model of the
concepts expressed by a modeling language.” The exact definition of a meta-model is
highly debated amongst MDE researchers[12].

Figure 2.5: A simple example of a model and its meta-model.

Chapter 2. Background 10

Figure 2.5 shows a simple example of an instance model and its corresponding meta-
model. This model has two classes, Student and Course, and a bidirectional association,
take course and has students, that relate these two classes. The model is specified by a
meta-model that consists of two meta-classes Class and Association and an association
between them. Both Student and Course are an instance of the meta-class Class, while
the association between Student and Course are instance of the meta-class Association.
The modeling language that describes this model corresponds to the Unified Modelling
Language.

Meta-Object Facility

The Meta-Object Facility[13] (MOF) is an Object Management Group standard for
model driven engineering. The Object Management Group was in need of a architec-
ture to define the UML. Therefore the Meta-Object Facility has its origin from UML.
Through this process of finding a common platform for UML, OMG designed a four lay-
ered architecture that provides a semi-formal approach to creating meta-models. MOF
became a language for defining abstract syntax for modeling languages.

Figure 2.6: Example of Meta Object Facility and its four layers.

Figure 2.6 gives a impression of the four layers that are available in the Meta-Object
Facility. At the top level, M3 there is a meta-meta-model called MOF. This meta-meta-
model is meant to both describe it self and conform to itself. MOF is then used to
describe meta-models at the M2 level. The UML meta-model is an example of such a
meta-model. The idea is that these meta-models are specified by some meta-modeling
language. Models at the M2 layer represents the abstract syntax for models created in
the M1 layer. This layer represents models that are created by some modeling language,

Chapter 2. Background 11

like for example UML. Finally at the M0 we have an instance model of a real world
object. If we refer to our simple example concerning a model and its corresponding
meta-model in figure 2.5. From this example we can create a real world object of that
model, “Petter Barvik” takes a course in Model Transformations. MOF provides meta-
modeling architecture where every modeling element on every layer corresponds to some
modeling element of one layer higher. One could say that MOF is a Domain Specific
Language (DSL) to create meta-models.

2.2.2 Constraints

Constraints impose conditions that modeling elements must satisfy and helps to define
the semantics of a domain specific language. A constraints can be compared to a Boolean
condition. Boolean conditions are either true or false, while constraints are either satis-
fied or not satisfied. Including constraints to modeling elements in the abstract syntax
specifies how modeling elements are presented in an instance model. Modeling elements
that are included in the abstract syntax can have constraints defined on objects, classes,
attributes, links, associations, etc. A constraint is a restriction on how these elements
should behave. Constraints on elements such as those above can be expressed with a
natural language or by a formal language, such as the Object Constraint Language[14]
(OCL). The Object Constraint Language (OCL) is a declarative programming language
for describing constraints that applies to UML models. Before UML became an adopted
standard of the Object Management Group (OMG), OCL was an extension language
to UML. Now OCL can be used with any Meta-Object Facility (MOF) meta-model,
including UML. A software developer can in combination with UML and OCL define
the semantics for a modeling language[15].

The di↵erence between object and classes needs to be specified. A class is often a meta
element for an object. This means that a class could be part of a model that describes an
object element, and therefore an object element is typed by class element[16]. Figure 2.5
describes the two object elements Student and Course that are an instance of the meta-
element Class.

Figure 2.7: Example of a simple model with attached and structural constraints.

These restrictions on model elements can either be a structural constraint or an attached
constraint. These structural constraints are defined in the structure of the models. In
figure 2.7 we have extended the model we introduced in figure 2.5 with some modeling
elements. We have created an association that specifies that a student can date other
students. In this model we can see that the model has three multiplicity constraints that
are part of the models structure. A multiplicity constraint for an association restricts

Chapter 2. Background 12

the number of objects that are related to a given object. From the association constraint
on this model we can see that a student requires to take at least one course and up to a
maximum of six courses. The models restricts a student to not participate in any courses.
The second structural constraint requires a course to have at least one student for this
course to be part of a semester, and the course can have an arbitrary maximum number
of students participating this course. The association dates, between two students for
this model has an attached constraint, that is specified in the declarative language OCL.
The general form of an attached constraint has a context, in this case a Student, that
specifies what object the constraint includes. The is a constraint name followed by a
Boolean expression. The attached constraint has a name “Irreflexive” followed by a
Boolean OCL expression that explicitly refers to itself. This constraint specifies that
a student is unable to date her or him self. Constraints has a vital part in model
driven engineering to measure the quality and precision of a model. A model without
constraints does not work in practice. In The Object Constraint Language: Getting
Your Models Ready for MDA[15], Jos Warmer and Anneke Kleppe states that a model
without constraints would be severely underspecified. Constraints expressions written
in OCL are unambiguous and results in a more precise and detailed model. If we where
to remove both the structural and attached constraints from figure 2.7 then the model
is less informative. There is no understanding on how the objects are related to one
another.

2.3 Language Workbenches

Language workbenches are tools that lets user specify their own Domain Specific Lan-
guage (DSL) and include editing tools for the newly created language. A workbench
should consist of Integrated Development Environment (IDE) that lets users create
their own DSMLs. Figure 2.8 is provided in the paper, “DPF Workbench: a multi-level
language workbench for MDE”, that was published by Yngve Lamo, Xiaoliang Wang,
Florian Mantz, yvind Bech, Anders Sandven and Adrian Rutle in 2013. The figure
presents the intended use of language workbenches and consist of two phases. The first
handles the definition of a new DSML and the creation of tool support such as code
generation, editors, model transformations, etc. A language workbench is created by a
domain expert in collaboration with an experienced developer. The latter describes the
actual usage of this newly created workbench, where developers can utilize the DSML en-
vironment to create models, generate implementation code, etc. Language workbenches
are a very young field in computer science, and there are many existing solutions that
is open for the public to use. These concepts have the potential to change the face
of programming as we know it[17], but the concepts of workbenches are still fresh to
computer science.

Chapter 2. Background 13

Figure 2.8: Intended use of language workbenches.

The concepts behind a language workbench is that the tool does not just provide the
users with an IDE to create DSLs, but also generates a new IDE where this newly
created DSL can be edited. In addition to an IDE that provides creation and editing of
a newly created language a workbench should define support for code generation, model
transformation, model versioning, etc[18]. Figure 2.9 shows the di↵erent components of
a language workbench.

Figure 2.9: Components of language workbenches.

• The abstract representation for the language.

• One or more editing environments for the language.

• Defining the semantics behavior of the language.

2.3.1 EMF

Eclipse Modeling Framework is originally based on Meta Object Facility (MOF) pro-
vided by the Object Management Group (OMG). In 2003 EMF designers contributed

Chapter 2. Background 14

to designing the MOF 2.0 version of the standard that was named Essential EMOF
(EMOF). EMF provides the meta-model Ecore that is aligned to EMOF and is a mod-
eling language to build modeling languages. Ecore is essentially a simplified version of
class modeling in UML.

Figure 2.10: A graphical representation of an Ecore model.

Figure 2.10 represents an Ecore model that is created from a graphical editor. This
Ecore model conforms to the Ecore meta-model and is the core language for EMF. The
framework provides a two layered approach to meta-modeling where the user can create
a DSL based on the Ecore meta-model. Based on the DSL the framework provides
code generation facilities. Amongst generating java implementation for the model the
framework also provides code generation for an editor that is based on the DSL. This
editor can be used to create instances of the defined DSL.

2.4 Diagram Predicate Framework

Diagram Predicate Framework[12, 18, 19] (DPF) is an ongoing research project that was
first initiated by Bergen University Collage and the University of Bergen in Norway 2006.
With features likes meta-modeling, model transformation and model management, DPF
aims at formalising concepts of model-driven engineering. DPF is based on category
theory and graph transformations and is an extension of the Generalised Sketches[20]
formalism that was initially developed by Zinovy Diskin.

In October 2002 Dominique Duval published a paper where he specified that a specifi-
cation can be considered as a directed graph with additional structure in the same way
that a theory can be considered as a category with additional structures[21]. Generalised
Sketches by Zinovy Diskin utilize the concept of sketches. A sketch, first introduced by
Ehresman in 1966, is a directed graph that provides additional properties, such as col-
imit, limit and constraints. DPF utilize this concept through an diagrammatic approach

Chapter 2. Background 15

to meta-modeling and to facilitate the concepts of MDE. The framework provides the
possibility to define an unlimited layers of meta-modeling. In DPF models are repre-
sented as specifications.

• A specification S = (S, CS :⌃) consist of an underlying graph S and a set of atomic
constraints CS .

• Atomic constraints are specified by predicates from a predefined signature ⌃.

• A signature ⌃ = (⇧ , ↵) consist of a collection of predicates.

A specification S has an underlying graph S that contains modeling elements that defines
the model structure of the specification. These modeling elements are always represented
as a node and an arrow. However these nodes and arrows could be specified through
several layers of meta-models or specifications. The specification S also consist of a
set of constraints, these constraints will restrict the model structure of a new instance
model of this specification. Figure 2.11 presents a specification S2, that is defined by an
underlying specificationS3 and describes a modeling language for someS1 specification.
This specification includes two nodes Condition and Activity, two arrows ChoiceOut and
Message and two sets of atomic constraints. The first constraint defines that a Condition
element has to be connected to exactly one Activity element for this structure. The
second constraints specifies for this graph structure that an Activity element cannot
be associated with it self. These constraints examples are specified as a collection of
predicates from a predefined signature ⌃. The table in figure 2.11 represent some of the
predicates from this collection. A predicate is represented by an unique symbol ⇧, a
shape graph ↵, a proposed visualisation and a semantic interpretation

Figure 2.11: A specification S2 with some attached predicates.

An instance specification Sn that is initialised from a specification Sn+1 defines a
graph homomorphism between two underlying graphs. There is a graph homomorphism,
Sn�!Sn+1, between the underlying graph Sn of a specification Sn and the underlying
graph Sn+1 of a specification Sn+1[18]. The graph homomorphism Sn�!Sn+1 must sat-
isfy a set of atomic constraints, CS from a specification Sn+1. Figure 2.12 from Adrian
Rutle’s dissertation, Diagram Predicate Framework A Formal Approach to MDE [12]
that was published in 2010 represents an example of a specification that is defined by a
modeling formalism.

Chapter 2. Background 16

Figure 2.12: Meta-modeling represented as modeling formalism’s in DPF.

Because in DPF a modeling language is represented as a modeling formalism. A mod-
eling formalism in DPF is defined by a set of atomic constraints and a specification
that has an underlying graph and a set of atomic constraints. For example figure 2.12
represents three levels of abstractions for defining a DSML. The specification S1 that is
defined at the first layer corresponds to the modeling formalism one layer higher. The
modeling formalism consist of a specification S2 that has an underlying graph S2 and a
set of predicates Z3. Together with specification S2 a set of predicates Z2 can be defined
together with the underlying graph S2 to define a modeling formalism[12]. This defined
modeling language, or modeling formalism provides the abstract syntax that can be
used to create a specification or modeling formalism one abstraction layer lower. What
is special with DPF is that a modeling formalism represents both the abstract syntax
for a specification one abstraction layer lower and the concrete syntax for a specification
one abstraction layer higher. The set of atomic constraints Z2 provides the semantics
while the specification S2 provides the abstract syntax for defining a new specification
S1. Figure 2.13 explains the di↵erence between OMG’s MOF on the left side and DPF’s
multi layer meta-modeling hierarchy on the right side

Chapter 2. Background 17

Figure 2.13: OMG’s layers of meta-modeling and an arbitrary layer of meta-modeling.

These two sides highlights the di↵erences between DPF and modeling environments that
expand MOF to create modeling languages. While MOF based modeling environments
provides two abstraction layers, DPF on the other hand provides a possible unlimited
abstraction layers users can interact with. The reason that MOF based modeling en-
vironments provides two layers to interact with is because the layers M2 and M3 are
usually part of the environments internal infrastructure. For example in EMF users can
create models that conforms to the Ecore meta-model. The only meta-model that users
of DPF are unable to interact with located at the highest abstraction layer. A specifica-
tion Sn+1 is specified by a modeling language that corresponds to a specification Sn+2.
But the same specification Sn+1 also represents the abstract syntax for a specification
Sn. These DPF models automatically generates a new graphical editor environment
provided by the DPF Editor.

2.5 DPF Workbench

The DPF Workbench provides a modeling environment for DPF and consist of three
main components. These are the “DPF Model Editor”, the “DPF Signature Editor”
and the “DPF Code Generator”. The first two editors provides the modeling func-
tionality for the DPF Workbench. “DPF Model Editor” is used to create and modify
DPF specifications. The “DPF Signature Editor” is used as a supplement to the “DPF
Model Editor”. It provides an editor to construct user defined predicate signatures.
These signatures can then be used to define the semantics of a DPF specification in the
“DPF Model Editor” if the predefined predicates that DPF provides does not su�ce.
Figure 2.14 that is provided in the article, “DPF Workbench: a multi-level language
workbench for MDE”[18], explains how the “DPF Signature Editor”, the “DPF Model

Chapter 2. Background 18

Editor” and a DPF Model is related to each other in the DPF Workbench over dif-
ferent abstraction layers. The “DPF Code Generator” provides the users with a code
generation environment for DPF specifications.

Figure 2.14: Generated DPF Editors in a multi-layer meta-modeling hierarchy.

DPF Model Editor

The DPF Model Editor is an extension of the Diagram Predicate Framework that pro-
vides an intuitive approach to creating modeling languages and have been created using
several di↵erent technologies. In 2011 Øyvind Bech published his master thesis[22] where
he designed the implementation of the DPF Model Editor that is based on the Eclipse
Modeling Framework technology. This first version of the DPF Model Editor has seen
several iterations and provides support for creating domain specific modeling languages.
Figure 2.14 explains that a new instance of the DPF Model Editor is generated for each
new model that is created. This means that every DPF specification has a correspond-
ing editor that provides graphical editing properties to change the models. For each
generated editor we can create a new DSL one abstraction layer lower that generates a
new editor that correspond to this DSL.

Chapter 3

Model Transformation

Transformations are a fundamental aspect in computer science and software engineer-
ing. Whenever a computer starts up, transformation of computer systems and computer
programs happens frequently. Take a compiler for instance, it plays a vital part of a com-
puters internal infrastructure. A compiler is a computer program that translates source
code written in a high-level programming language into a lower level language, such as
an assembly language or machine code. This means that a computer program written in
a general-purpose programming language, such as Java or C++ would be useless with-
out a compiler, since the computer’s central processing unit (CPU) depends on machine
code to be able to execute a set of instructions. But also computation of primitive data
values and performing operations on data structures such as lists and arrays can also be
viewed as data transformations. When a programming language provides a way to type
these data values or data structures, then a compiler or interpreter can apply operations
to the data accordingly to the type. But when we mention data representing software
artifacts such as a data schema, programs or models, then transformation approaches

3.1 Basic concepts of model transformation

The very basic concept of a model transformation on the highest level of abstraction is
to translate one model to another model. This model translation can either be achieved
through an endogenous or an exogenous model transformation. For an endogenous
model transformation we take a source model expressed in a modeling language and
produce a target model expressed in the same modeling language. While an exogenous
model transformation translates a source model expressed in one modeling language into
a target model expressed in another modeling language. It is essential that these models
remain consistent, and therefore both the source and target model have to conform to
their corresponding meta-models.

19

Chapter 3. Model Transformation 20

Figure 3.1: The basic concepts behind a model transformation.

Figure 3.1 represents the basic concepts of a model transformation. The two concepts,
transformation language and transformation engine are provided by some model trans-
formation environment. The main idea behind changing two models are to read a source
model and write a target model. The transformation engine executes a set of guidelines
provided by a transformation language that express how the target model is constructed.
These guidelines is created from meta-data that are defined in the source and target
meta-model to create an executable environment for the transformation engine. Where
the transformation language refers to both the source and target meta-model when spec-
ifying these guidelines. The transformation language specifies how a translation between
two models should be applied through the abstract syntax that the meta-models pro-
vides. Note that the concrete syntax for a domain specific modeling language could
be represented either graphically or textually. Traditionally when we use the concept
model, we consider a graphical syntax, with nodes and vertexes that are connected with
arrows and edges. However a model can also have a textual representation and therefore
we often say that a model transformation can produce two di↵erent kind of target mod-
els. At the highest level of abstraction these two di↵erent target models can either be
produced by a Model to Text (M2T) transformation or a Model to Model (M2M) trans-
formation. A Model to Text transformation takes a source model and produce sequences
of strings as a target model. The other approach, Model to Model transformation takes
a source model as an input model and produce a target model. The main distinction
between the two categories is that a M2M transformation produce an instance model
that conforms to some meta-model while an M2T produces implementation code as its
target model. We can expand the knowledge we have so far with model transformations
that these endogenous and exogenous can produce a target model over di↵erent layers
of abstractions.

3.1.1 Layer of Abstractions

In the beginning of 2006 Tom Mens and Pieter Van Gorp published a paper[23] that
explains di↵erent aspects of model transformations. One aspect of model transformation
they address is the direction through abstraction layers for endogenous and exogenous
model transformations. In their paper they state that the “dimensions horizontal versus
vertical and endogenous versus exogenous are truly orthogonal”[23]. Horizontal and
vertical model transformation are two categorizes that describes transformations over
di↵erent layers of abstraction. In MDE a layer of abstraction represents models that are
specified by models from a higher layer of abstraction. For example a class diagram that
is specified by the UML model. Modeling elements that are defined for the class diagram

Chapter 3. Model Transformation 21

is represented on one level of abstraction while modeling elements that are defined by the
UML model is represented one abstraction level higher. This looks familiar concerning
meta-modeling. An instance model of a meta-model is located on an abstraction layer
lower than the abstract syntax. Consider table 3.1 that was published in paper[23].
The table describes some examples of di↵erent model transformations over layers of
abstractions.

Horizontal Transformation Vertical Transformation

Endogenous Transformation Refactoring Formal refinement

Exogenous Transformation Language migration Code generation

Table 3.1: Example model transformations.

Previously in this section we discussed that changing a model to another model can ei-
ther be applied by an exogenous or an endogenous model transformation. But when we
consider these two types of model transformation we can also express that model trans-
formations are vertically or horizontally translated amongst abstraction layers. For a
vertical model transformation a target model is translated according to models that are
specified on a higher abstraction level, while a horizontal model transformation produces
a target model that correspond to a di↵erent abstraction layered hierarchy. The table
above express that that we can have for example endogenous model transformations
that provides refactoring or formal refinement of models. These two example transfor-
mations are applied di↵erently concerning abstraction layers. Refactoring is an example
of a horizontal model transformation that applies changes to a model expressed in some
modeling language, and since this is an endogenous model transformation we can safely
assume that the abstraction level is the same before and after the transformation is
applied. A specific model refactoring example is the Pull Up Attribute[24] that moves
a common attribute from a subclass of a given class to this class. Language migration
is another example of a horizontal model transformation, and is an exogenous model
transformation that produces a model expressed in a di↵erent modeling language com-
pared to the source model. A classical example of a language migration is to translate
a class diagram to a relation database model. This example has become more or less a
benchmark for model transformation tools and provides a transformation for a modeling
language that is specified through a abstraction layer hierarchy to a modeling language
that is specified through another abstraction layer hierarchy. The reason for mentioning
that an abstraction layer is part of a hierarchy is because there exist solutions for creat-
ing a domain specific modeling languages over an arbitrary layers of abstractions, such
as the Diagram Predicate Framework[18] (DPF), metaDepth[25] or Visual Modeling
and Transformation System[26] (VMTS). Comparing these with the Eclipse Modeling
Framework (EMF), that provides a two layered approach to specifying a DSML, we can
say that exogenous model transformations are applied to a two layered abstraction hier-
archy. EMF creates a DSML based on the Meta Object Facility and therefore provides
the user the possibility to define a DSML as a meta-model and create an instance model
of this DSML meta-model. While the three other tools mentioned above provides an
n-layered meta-modeling environment to specifying DSMLs. This means that a source
DSL might only be described in one meta-model while a target DSML might have been
specified through several layers of meta-modeling. Regardless of how many abstraction
layers a DMSL is defined over for a source and a target model, the model transformation
is provided horizontally. Code generation is an example of a model transformation that
vertically translates through layers of abstraction and is usually the final model that

Chapter 3. Model Transformation 22

is produced in a model driven development cycle. Code generation is a Model to Text
transformation that translates a source model that is described by a DSL and produce
a target model that usually is described by a general purpose programming language,
such as Java or C++. Figure 3.2 represents both a vertical model transformation and a
horizontal model transformation. We can see that the vertical model transformation ex-
ample represents a small portion of the MDA approach to software development, where
implementation code is generated from a collection of platform specific models. The
horizontal model transformation example provides a di↵erent example to model trans-
formations, that is mering models into another model and is convenient for synchronizing
models.

Figure 3.2: Vertical and horizontal model transformations.

The other provided example is a vertical model transformation that presents the last
example of an endogenous model transformation, and that is refinement of a model. The
three model types that MDA provides can be viewed as a endogenous model transfor-
mation that provides a model that is gradually refined into executable implementation
code, by going through refinement steps that add more details to the model. For exam-
ple when mapping a platform-independent model to a platform-specific model, like we
discussed in section 2.1.1.

3.2 Model Transformations in MDE

Model transformations are in the center of Model Driven Engineering. The vision for
MDE is to increase automation of models between level of abstractions. This vision is
achieved through the use of model transformations. Either if it is to use a model to
text approach to generate source code, or by transforming a model to another model
where both models concrete syntax are specified by an abstract syntax that a meta-
model provides. A model driven approach to software development thrives to keep
a high level of abstraction for as long as possible through translating these models.
And therefore model transformations are essential to be able to deploy model driven
engineering in a software development process. The principles behind OMG’s Model
Driven Architecture utilize the concepts behind model transformation to a full extend.
Figure 3.3 gives a representation of how MDA wishes to facilitate the use of models
and model transformations in a software development. The figure was published in Kim

Chapter 3. Model Transformation 23

Letkeman article, “Comparing and merging UML models in IBM Rational Software
Architect”[27] in October 2010.

Figure 3.3: Model Transformations in Model Driven Architecture.

We can see the di↵erent level of abstractions that the architecture provides and how
to translate between abstractions. Remember what we discussed in section 2.1.1 that
the architecture represents a software design approach for developing software applica-
tions. Where it expands the requirements of a software application into models and
at the last level of abstraction the architecture provides implementation code for the
application. The code that is generated most likely requires some additional work by
developers, but a major part of the implementation code is generated through the use
of models. Figure 3.3 explains that a set of transformations are required for a model
to fuse to another model, or said di↵erently, for a model to be integrated into another
model. These transformation rules, that specifies how a model from a high level of
abstraction is translated to a model on a lower level of abstraction, provides a devel-
opment process that produce implementation code through automatically generating
models on di↵erent levels of abstraction. Models and model transformations are equally
important for MDE to be applied in a software development process. Without model
transformations models would only represent an abstraction of a system. This means by
utilizing model transformations in a software development cycle, models can evolve into
executable implementation code by translating through di↵erent level of abstractions.

3.3 Existing Environments

There are a wide variety of existing model transformation environments and tools avail-
able. Some have experienced extensive testing through several iterations and some are
relatively fresh to the MDE community. This section shortly describes some of these
model transformation environments and how these environments approach translation
of models. Because there are several di↵erent approaches to model transformations and

Chapter 3. Model Transformation 24

for the purpose of this thesis we will only address approaches that indicates model to
model transformations.

OMG provides a standard that includes three such model to model transformation ap-
proaches. In 2002 OMG issued a request for proposal regarding Query/View/Transfor-
mation (QVT)[28] where they sought a standard that was compatible with other OMG
specifications such as MOF, UML, OCL, etc. This later lead to the release of Meta Ob-
ject Facility (MOF) 2.0 Query/View/Transformation Specification in April 2008. The
standard specifies the three model transformation languages or approaches to model
transformation,

• QVT Operational is an imperative language that support implementation of uni-
directional transformations.

• QVT Relations is a declarative language that supports implementation for both
unidirectional and bidirectional model transformations.

• QVT Core is also a declarative language that is meant to act as the target of
transformations from QVT Relations.

A unidirectional model transformation has only one mode of execution: that is, it always
takes the same type of input and produces the same type of output. For a bidirectional
model transformation, the same type of model can sometimes be input and other times
be output [29]. A model transformation in any of these three languages can itself be
regarded as a model that conforms to a corresponding meta-model that is specified in
the QVT standard. Note that an model transformation implementation based on any
of these three languages requires source and target models that conforms to a MOF 2.0
meta-model. Since the release of the standard there has been several implementations
of these three languages. The Eclipse Foundation have contributed with implementa-
tions of the QVT standard in the MMT project. The Model to Model Transformation
(MMT) project hosts Model to Model Transformation languages. These transformations
are executed by transformation engines that are written into the Eclipse Modeling infras-
tructure. MMT is a sub project of the top level Eclipse Modeling Project[30]. ATLAS
Transformation Language (ATL)[31] is developed on top of the Eclipse platform and is
one of three model transformation environments provided by the Model to Model Trans-
formation (MMT) project[32]. ATL is often referred to as a QVT Like implementation
of the QVT standard. ATL is an hybrid approach to model transformations that im-
plements techniques based on the three QVT languages. Another model transformation
environment provided by the MMT is QVTo[33] and is based on the QVT Operational
model transformation language.

Model transformation environments like Visual Automated Model Transformations[34]
(VIATRA), Henshin[24], Graph Rewriting and Transformation Language[35] (GReAT),
The Attributed Graph Grammar System[36] (AGG) and A Tool for Multi-formalism
and Meta-Modelling[37] (AToM3) are approaches that is based on category theory’s
theoretical work on graph transformations. And model transformations that is based on
the concepts of graph transformations have a LHS and a RHS graph pattern. The LHS
provides a graph structure that is used to locate matching graph structures in a source
model while the graph structure included in the RHS is meant to replace a matching
graph structure. We will explore the concepts of graph transformations in more depths
in section 3.5. But first we will describe some design features of model transformation
environments.

Chapter 3. Model Transformation 25

3.4 Classification of a model transformation

In March 2006 Krzysztof Czarnecki and Simon Helsen published a domain analysis
that covered existing model transformation approaches[38]. A domain analysis repre-
sents information on software system that share a common set of features for a given
domain[39, 40], in this case the domain is model transformations. In their paper they
presents the result by using feature diagrams, that provides a terminology and represen-
tation of the design choices for existing model transformation approaches. These feature
diagram does not only represent model to model transformation approaches, but also
consider the design choices for model to text transformation approaches. For the pur-
pose of this thesis we will only address the model to model approaches in Czarnecki and
Helsen’s survey on model transformations. However it is important to address that at
top level, we can divide model transformations into to categories, namely model to text
and model to model transformations like we discussed in earlier sections. We consider
three feature diagrams that Czarnecki and Helsen produced in their report[38]. These
diagrams are provided in figure 3.4, 3.5 and 3.6. This section is based on the ideas and re-
sults from Czarnecki and Helsen’s report and A Taxonomy of Model Transformation[23]
that was published by Tom Mens and Pieter Van Gorp in 2006.

Figure 3.4: A domain analysis of model transformations[38].

Figure 3.4 shows the feature diagram at top level of a model transformation, where a
subnode represents design choices for a model transformation. These design choices of
a model transformation can give a better understanding on the di↵erent parts that a
model transformation provides. A model transformation environment needs to tackle
these design choices that figure 3.4 refer to in some manner. However, not all of these
design choices are mandatory. Above each subnode in these three feature diagrams there
is a black filled circle and an empty circle. The empty circle explains that these design
choices are optional, like for example Specification and Incrementality, while the others
are mandatory features for a model transformation. The rest of this section we will try
to find a better understanding of the concepts model transformations.

Chapter 3. Model Transformation 26

3.4.1 Specification

3.4.2 Transformation Rules

Figure 3.5: Features for transformation rules.

For a model transformation to be able to translate a model to another model it needs a
set of guidelines on how to achieve this. Therefore a model transformation has a set of
transformation rules that specifies how a target model is produced. A transformation
rule usually defines two special patterns. One pattern represents a searching pattern
while the other pattern represents the part that is produced. An obvious example of
such rules are the rewrite rules, that provides a left hand side (LHS) and a right hand
side(RHS) where both sides represents some user created patterns that are considered
when a transformation engine applies a corresponding transformation rule. But a func-
tion that implements some transformation steps can also be seen as a transformation
rule. Regardless if the concrete syntax is either textual or graphical, the users have to
specify a pattern that is used to locate matches and a pattern that is used to replace
these matches with a result.

Domain

A transformation rule is specified by certain domains. These domains are responsible
of accessing either the source or target model for each corresponding rule. A domain
represents both the part that is used to find matching patterns in a source model and
the part that produces a target model. For example for a classic rewriting rule we would
have one domain for the LHS and one domain for the RHS of the rule.

Figure 3.6: Features for a domain.

Figure 3.6 gives a representation of what a domain contains. A domain is provided
with a domain language. The domain language represents how we can structure the
domains. In the context of model transformation tools that translates models that utilize
the Model Driven Architecture this domain language would have form of a meta-model
expressed in the Meta Object Facility. The domain language express what language we
use to define the abstract syntax for both the source and target model. Static mode
determines if a domain represents a searching part, a create target part, or as both.

Chapter 3. Model Transformation 27

The classic rewrite rules has a source domain that represents the LHS and a target
domain that represents the RHS. Transformation rules that can be applied in both
directions assumes all domains to be both a source and a target domain. Dynamic
mode restriction concerns model transformation tools that provides rules in multiple
directions, that means that the source and target model can act as both a source or
target model depending on what direction a transformation occurs. For these rules a
domain can be restricted to act as a source domain, and not as a target domain. A body
determines the actual pattern for a domain. This pattern has a certain structure, where
the pattern for example can represents graphs or strings. This pattern has a provided
abstract or concrete syntax. The abstract syntax describes what modeling elements
a certain pattern can contain while the concrete syntax determines if the modeling
elements are textual or graphical. The body part of a domain can also contain logic
that express computations and constraints on modeling elements. Typing determines
the typing of the contents of a body. Patterns can either be untyped, syntactically
typed or semantically typed. For syntactically typing modeling elements that are part
of a pattern is associated with a meta-model element.

Syntactic Separation

Some approaches to model transformation includes syntactic separation of accessing
models. These model transformation approaches clearly separates on what models a
transformation rules operates. For example in rewrite rules the LHS operates on the
source model while the RHS operates on the target model. Some model transforma-
tion approaches might not have any distinctive separation, like for example an model
transformation implemented as a Java program.

Multi-directionality

Multi-directionality determines if model transformation approach provides transforma-
tion rules to be applied in di↵erent directions. This is convenient when synchronizing
models over model transformations for example. Model transformation approaches that
supports applying rules in both directions are usually defined over a domain that is both
a source and a target.

Application Conditions

Transformation rules for some approaches supports application conditions. An appli-
cation condition provides an extra property that specifies a filter for search patterns.
Application conditions are handled di↵erently amongst the model transformation ap-
proaches. Model transformation approaches that implements the QVT standard often
use control flow statements like the when-clause or the if-then-statement that must be
true in order for a transformation rule to be applied. Model transformations approaches
that is based on category theory and graph transformations on the other hand specifies
application conditions as graph structures that either requires or forbids this specific
graph structure in a located matching graph structure.

Intermediate Structures

Some model transformation approaches requires intermediate structures when executing
a set of transformation rules. These structures are usually only used as a supplement
when applying a set of transformation rules. One example of an intermediate structure
is a traceable link. These traceable links usually has a corresponding meta-model that
is required to be included in a model transformation environment. Some approaches

Chapter 3. Model Transformation 28

to model transformation rely on this intermediate structure to be able to translate a
model. An example to this is that this traceable link is created after a rule is applied to
prevent this rule for locating the exact same match next time it is applied.

Parameterization

Parameterization allow for passing values to a transformation rule. For example we can
pass data types, for example modeling elements to a transformation rule. We can then
apply changes to a transformation rule with these provided parameters and at the same
time use the same data types in other transformation rules.

Reflection & Aspect

Some model transformation environments allows for a reflective look up of target model-
ing elements for source modeling elements at runtime when target modeling elements are
already transformed. For example a lazy rule in ATL allows for explicitly iterate over al-
ready transformed modeling elements and apply some reflective operation on the target
modeling elements. Transformation rules that utilize an aspect-oriented extension are
rules that can a↵ect other rules when applied. Both of these categories can be used to
express concern cross-cut other transformation rules. This means transformation rules
that can directly a↵ect other transformation rules.

3.4.3 Rule Application Control

This section can be divided into two sub categories, namely locating matches for a
transformation rules and how these rules are be applied. Locating a matching pattern
in a source model is rarely controlled by the users. The di↵erent model transformation
languages utilizes optimized searching algorithms to locate these matches, where a rule
has to be applied to a specific location in a source model. Usually there are more then
one exact match for each rule, and therefore a transformation engine has to consider
that there are several matches for a specific search pattern in a source model. There
are multiple di↵erent search algorithms for locating these matches, but these search
algorithms often have a common strategy to determining the application locations. The
locate matches strategies could be applied deterministically or non-deterministically for
example. It is important to di↵erentiate between a strategy and a search algorithm.
A strategy implies how an algorithm for locating matches is executed. An algorithm
that is applied by a deterministic strategy, given a particular source model, will always
produce the same output. For example for directed graphs a deterministic strategy could
exploit some graph traversal algorithms, such as Breadth-first search[41] (BFS) or Depth-
first[41] search (DFS). An algorithm that are executed with a non-deterministic strategy
on the other hand can experience di↵erent behaviors on di↵erent runs. An example of
a non-deterministic strategy is one-point application[38] and concurrent application. A
one-point application applies a rule to a non-deterministically location in a source model.
This means that a rule will search for matches at random locations within a given source
scope. While a concurrent application applies a rule to all matching locations at the
same time.

Before a matching pattern can be located in a source model a model transformation
environment has to have a mechanism that schedules these transformation rules. Some
model transformation tools provides the user with the possibility to explicitly decide
when transformation rules are applied. The scheduling of transformation rules can be

Chapter 3. Model Transformation 29

divided into implicit or explicit rule scheduling. For an implicit rule scheduling mecha-
nism the user are not given any control over how transformation rules are applied, that
is controlled by the tool it self. Explicitly controlling the rule schedule can be achieved
either internal or external. Internal rule scheduling allows a transformation rule to in-
voke other transformation rules, for example lazy rules in ATL. External rule scheduling
provides a mechanism that can include transformation rules and execute these by some
scheduling logic, for example sequentially executing a collection of transformation rules.
We can also select specific rules and execute these accordingly. This is achieved by
providing a scheduling mechanism with a explicit condition that specifies how the trans-
formation rules is applied. This condition could for example specify that we should apply
rules according in a certain priority. A scheduling mechanism is then provided with rules
that is applied in priority over other rules. Now we have seen that a scheduling mech-
anism can be defined explicitly or implicitly by the users and can have conditions that
determines if the rules should be applied in a certain order. Model transformation tools
also have scheduling mechanisms that provides the possibility to iterate through a set of
rules. What we mean by iterating through a set of rules is that a model transformation
tools applies a transformation rule until there are no more matches. These rule iteration
scheduling mechanisms include recursion, looping and a fixed number of iterations.

The available model transformation tools provides di↵erent solutions to both locating
matches and defining rule scheduling mechanisms. Usually the users are given more
freedom to defining the rule scheduling mechanism compared to locating matches.

3.4.4 Rule Organization

This feature represents how the rules are organized and if they are easy to reuse. The
rules are usually represented as a collection of rules, where these rules could either be
represented in some source code or by some tree based editor. Some model transfor-
mation approaches o↵er a modular approach to rule organizing. This means that the
rules are contained in a module and are therefore easy to reuse. This gives the users
the possibility to import these modules and use them in other modules. This modu-
lar approach to creating transformation rules can implement lazy rules, and lazy rules
are transformation rules that can be integrated in other rules. These rules are highly
reusable and can be used in any other module. In graph based model transformations
rules are in most cases organized into a set of rules, where each rule is not available
for other rules to use. This is because a transformation rule expressed in an algebraic
approach to model transformation has the pattern and the replacement graph. And by
adding a new rule with a new pattern graph and replacement graph will probably result
in a transformation rule that search for matches that was not intended.

3.4.5 Source - Target Relationship

How can a model transformation environment distinguish if a model transformation is
an endogenous or exogenous model transformation? This is achieved by specifying how
a source model and target model are related to one another. These source and target
models can relate to a meta-model for example. Both the source and target model
could be described by the same modeling language. This specifies that a translation
between source and target model are an endogenous model transformation. And as we

Chapter 3. Model Transformation 30

described in earlier in this section is that an endogenous model transformation translates
one model written in one modeling language and produces a model written in the same
modeling language. One aspect of this source-target relationship is that the source and
target model are independent of each other. The model transformation environment is
responsible to read and write these models, and to make sure that these models remain
consistent. One could say that the target model are implicit depending on a source
model, since a model transformation requires a source model to translate accordingly.
The model transformation language creates transformation rules based on the corre-
sponding meta-models that describes both the source and target model. And therefore
administrate how these models relate to one another through these transformation rules.
If the source and target models are written or modelled by using two di↵erent model-
ing languages, then we have an exogenous model transformation, and the relationship
between the models should be adapted accordingly.

The source and target model can also in some cases be one and the same model, Model
transformations that are applied one and the same model are called in-place model
transformations. In AGG the source and target model are always the same model, and
therefore AGG only supports in-place update of a model. The older versions of Atlas
Transformation Language (ATL) requires that a new target model, that is separated
from a source model is created when applying a model transformation. Creating a new
model as a target model for a model transformation specifies that this is an out-place
change to a model. However since January 2013 ATL support in-place transformations
through a refining mode. Other approaches o↵ers support for both in-place or out-place
updates and lets the users specify how the models should be updated. These out-
place model transformations could either be changes made to an existing model or by
creating a new model. QVT Relations and Henshin is an example of approaches to these
model transformations. Henshin does implicitly deliver an in-place model transformation
environment, that allows for in-place update of models. But explicitly, when using the
Henshin API, one could programmatically set up Henshin to do out-place changes to a
model.

3.4.6 Directionality

This section describes that a model transformation environment can translate a model
in multiple direction. We can distinguish the direction model transformations to either
be unidirectional or multidirectional. An unidirectional model transformation has one
source model that translates to a target model or updates a target model. What we
then can do is change the source model and source meta-model with the target model
and target meta-model. But this model transformation is not multidirectional, since
we have to apply two model transformation to achieve this. A multidirectional model
transformation can translate in di↵erent direction, regardless of source and target meta-
model. This is especially convenient for model synchronising, where we can translate in
multiple directions.

3.4.7 Tracing

Some model transformation environment has support for tracing of model elements.
Tracing works like a fingerprint in a model transformation and has an unique link be-
tween elements. A traceable link between source and target elements is a link between

Chapter 3. Model Transformation 31

mapped elements when a model transformation is executed and provides information
between the relationship between source element and its corresponding target elements.
The traceable link is stored in memory for the duration it takes to execute a set of trans-
formation rules. A traceable link is specified when creating the transformation rules and
requires source and target elements. When there is a match in a transformation rule, a
new traceable link is created between a matched source element and all corresponding
target elements. These traceable links is very convenient when analysing and debugging
a model transformation. Because now there is tracing on source and target elements on
each time a transformation rule finds a match in the source model.

How traceable links are used across transformation tools varies. In Henshin, ATL and
QVT these traceable links are handled automatically. For Henshin the user can use
Henshin Trace model to create traceable links. The trace model consists of a single class
Trace with a source and target reference. The user can then create this trace element
together with the transformation rules to relate source and target models. ATL has an
implicit tracing mechanism that specifies relationships between the source element and
its corresponding target elements by using a native type called ASMTransientLink[42].
For every time a transformation rule is matched to a source element, one ASMTran-
sientLink is created. To this transient link the name of the transformation rule provided
together with the source element and the target elements. These links are added to a
collection that has all the transient links and stored internally for ATL. This means that
the users of ATL cannot access these links after a model transformation has finished
executing. However, as shown by Andrés Yie and Dennis Wagelaar[42], that gaining
access to these ATL traces can be done explicitly by creating transformation rules that
generates a tracing model based on the internal tracing information provided by ATL.
In AGG traceable links are created as any other modeling element. Where the user
can specify a node and two arrows between source and target meta-element in the type
graph.

3.5 Graph based Approach to Model Transformations

One common approach to model transformations is by graph transformations, also re-
ferred to as graph rewriting. Graph rewriting can be implemented with an algebraic
approach, which is based on Category Theory. Before we go into detail about graph
transformation, we should quickly describe the concepts of Category Theory[43, 44].
Category theory can be used to formalize mathematical or software theory’s at a high
level of abstraction. In 2006 Steve Awodey published a second edition of the book,
Category Theory, where he stated,

“Just as group theory is the abstraction of the idea of a system of permutations of a set
or symmetries of a geometric object, category theory arises from the idea of a system of
functions among some objects[45].”

Chapter 3. Model Transformation 32

A B

C

f

f �
g

g

Figure 3.7: Collection of objects A,B and C.

Category Theory can be used as a supplement to explain the theoretical aspects behind
a problem or solution. A category consists of a collections of objects and functions. In
figure 3.7 we have a collection of objects A, B, C and arrows f, g, g � f. The figure
describe that there is a connection between the two objects A and B. This connection
indicates that there are some association between two objects. For this case this means
that function f is defined in A and the values of this function are in B. When the
objects represents graphs, then these connections between objects are often referred to
as morphisms between graphs or graph morphisms. Morphisms are pair of maps which
commute with source and target[8]. Figure 3.7 has three sets of graph morphisms, f : A
�! B, g : B �! C and g � f : A �! C. The last set of graph morphisms, g � f indicates
that there is a composite function between A and C. This basically means that if C is a
function g of B and B is a function f of A, then C is the result of a function between C
and A.

For the purpose of this thesis the collection of objects represents graphs the arrows
represents morphisms. A graph contains a collection of nodes and edges. A graph is
undirected when there is no distinction between two nodes associated with an edge or it
is a directed graph if an edge has a direction between two nodes. This means that each
node is represented as a source and a target node for an edge. A directed graph L can
be defined by L = { NL, EL, sourceL, targetL }. NL represents the collection of nodes
and EL represents the collection of edges that are included for the directed graph. The
third and forth elements, sourceL and targetL, are functions that retrieves the source
and target node for an edge. This collection of nodes and edges in a graph L can result
in an excact match in another graph G. The morphism between these two graphs are
called homomorphism.

Graph Homomorphism

When a graph that has a mapping of nodes and edges in another graph, then there is a
graph homomorphism between these two graphs.

L R

G H

mL mR

Figure 3.8: Two sets of graph homomorphism of graph L in G and R in H

Chapter 3. Model Transformation 33

Figure 3.8 has two graph homomorphisms L
mL��!G and R

mR��!H. Now if we consider the
first example, if there is to be a valid graph homomorphism between graph L and G,
then the collection of nodes and edges in L has to be mapped to nodes and edges in G.
If both graphs L and G are directed graphs we can safely assume that the definition of
graph L in the last paragraph is also true for graph G ={ NG, EG, sourceG, targetG }.
For a graph homomorphism mL from the graph L to the graph G, L

mL��!G, there is a
mapping mL : NL �! NG from the set of nodes in graph L to the set of nodes in graph
G and a mapping mapping mL : EL �!E G from the set of edges in graph L to the set
of edges in graph G that preserve both source and target nodes. This means that there
is a mapping from a source node in G that is equal to a source node in L and a target
node in G is equal to a target node in L.

3.5.1 The Algebraic Approach

This approach are based on the concepts of composing graphs, modelled by pushouts of
graphs and graph morphisms. This pushout approach comes in di↵erent variants, and
we will look at two of these, namely the double-pushout (DPO) approach and the single
pushout (SPO) approach[46, 47].

Historically, the first of the algebraic approaches to graph transformations, the double-
pushout, was first introduced at the Technical University of Berlin in the early seventies
by H. Ehrig, M. Pfender and H.J. Schneider[48]. They tried to generalize Chromsky
grammars from strings to graphs. This allowed to define a graph rewriting step by the
use of two gluing constructions. And by applying a graph rewriting step for the double-
pushout approach is a pair of morphisms in the category of graphs where the arrows
represents total graph morphisms, L � K �! R. This is true for each application
rule in a graph transformation for the double-pushout approach. Where the graph K
represents the common part and the two morphisms L � K and K �! R use the
algebraic construction, pushout to apply an application rule for a rewriting step. Hence
the name double pushout and the use of two rewriting conditions.

3.5.2 Transformation Rules

For a transformation language to be able to execute graph transformations a set of ap-
plication rules needs to be defined. Through these rules, a transformation interpreter
can act accordingly. These rules can have many names, and are often referred to as pro-
ductions or applications. For graph transformations, there can be an arbitrary number
of rules. Its truly up to the users how they want to translate a language and how many
rules that is needed to acquire this. Each rule consists of a left hand side (LHS) and a
right hand side (RHS), also often referred to as pattern graph and replacement graph.
The pattern graph represents a subgraph of the model that is going to be translated,
namely the host graph. For these productions to execute, there is an application control
mechanism that administrates the execution ordering of transformation rules.

3.5.3 Application Control

In graph transformation, there has to be a control mechanism that administrates these
productions. These control mechanisms are also called transformation units. These

Chapter 3. Model Transformation 34

units controls the order that the transformation rules are executed. The most basic
transformation unit is a rule itself which corresponds to a single application of that rule.
But in most cases, a transformation unit will have to control several rule applications.

3.5.4 Execution of rules

The basic idea for graph transformation for both the double-pushout approach and the
single pushout approach is to apply an application rule r: L �! R. Where the rule
represents a single rewriting step for graph transformations and L represents the left
hand side of the rule and R represents the right hand side of the rule.

L R

G H

mL

r

mR

Figure 3.9: The basic idea for graph transformation by applying a rule r.

A production rule r, G
r,m��!G’ indicates a direct derivation to a derived graph G’. In

figure 3.9, the graph G’ is created by applying a single pushout for a transformatin
rule r. If there is a match m of nodes and arrows for a subgraph L in a host graph G,
Then this indicates a graph homomorphism, mapping elements from the subgraph to
the host graph in such a way that the graphical structure in G is preserved. For each
rule r, there are some algebraic approaches to how we can achieve G’. At this moment
there are four approaches, the double-pushout approach (DPO) [46], the single-pushout
approach (SPO) [47], the sesqui-pushout[49] and the pullback approach[50]. Where the
two most common approaches used in graph transformation tools are the DPO and the
SPO approach. There is one major aspect that separate these two approaches, and that
is that the DPO approach has an application condition.

L C R

G C 0 H

mL

l

mC mR

r

Figure 3.10: Principles behind the double pushout approach.

This application condition, named the gluing condition[46] consists of two parts. Namely
the dangling condition and identification condition. From figure 3.10, the dangling
condition requires that if the transformation rule p specifies the deletion of a node in G,
then it must also specify the deletion of all incoming and outgoing edges of this node
in G. By applying this condition, we can be sure that there are no dangling edges after
deleting a node in G. The identification condition requires that every element of G that

Chapter 3. Model Transformation 35

should be deleted by applying a transformation rule p is only present once in L for each
transformation rule p.

A single transformation rule p in the DPO approach is given by a pair of graph homo-
morphisms from a common graph C. This common graph C is formed by taking elements
that are present in both L (LHS) and R (LHS) of a transformation rule p. The graph G’
are created from the graph G, by deleting all elements that is matched from the pattern
graph L, but none in C. To avoid dangling edges, the gluing condition must be satisfied
before deleting these elements. This is the first part (1) of the DPO approach, namely
the deletion of elements. The second part (2) is insertion of elements. From here we
create a graph H o↵ all nodes and arrows from the replacement graph R that is not
presented in the common graph C. The DPO approach has the possibility to preserve
elements from translating from the pattern graph L and the replacement graph R with
the help of a common graph C.

For the SPO approach on the other hand, deletion has priority over preservation. Fig-
ure 3.9 is a representation of the practices of the SPO approach. Where nodes that are
present in the pattern graph L but not the replacement graph R are deleted. And the in-
coming and outgoing edges of the deleted nodes that are not present in the replacement
graph R is deleted.

An application condition in graph transformation indicates an additional graph mor-
phism that provides a transformation rules with extra properties. These applications
can represent either a negative application condition or positive application condition.
Both instances of application conditions are very similar since they indicates some ad-
ditional information for a transformation rule. A negative application condition express
requirements that a specific graph structure is forbidden to be part of the located match-
ing pattern. On the contrary a positive application condition express that a specific
graph structure is required for a located matching pattern to be a valid match for a
transformation rule. Figure 3.11 represents a negative application condition[51] (NAC).

N L

G

n

nG
mL

Figure 3.11: A Negative application condition.

The figure contains three graphs and three graphs morphisms. Graph L represents the
LHS graph, graph G represents the graph that should be translated while graph N rep-
resents a negative application condition. A negative application condition specifies that
a certain graph structure should not be included in the located match. A positive ap-
plication condition on the other hand requires that a certain graph structure is part of
a located matching graph pattern. Note that a negative and positive application con-
dition is basically very similarly represented but implemented di↵erently. For example
the double pushout technique for graph transformations in figure 3.12.

Chapter 3. Model Transformation 36

N L C R

G C 0 H

n

nG
mL

l

mC mR

r

Figure 3.12: Double pushout approach with negative application condition.

Before the double pushout can be used, there has to be located a matching graph pattern
in G. The graph L will locate a matching pattern mL in G, then check if there exist an
application condition N, whether or not this application condition requires or forbids
a special graph structure there will be a graph morphism nG that states if a match is
valid. This application condition filters the searching of graph patterns in G each time
a transformation rule is applied.

Chapter 4

Problem Specification

4.1 Problem Specification

The DPF Workbench already includes support for model transformations. However, the
framework does not have support for transforming a model between di↵erent modeling
languages. One of DPF’s strengths is that it is possible to formally define a Domain
Specific Modeling Language by defining multiple levels of meta-models. What we want
to do is to include tool support for the DPF Workbench that change a model from one
meta-modeling hierarchy to another meta-modeling hierarchy regardless of the source
models abstraction layer. This leads to the main question for this thesis.

• Can we include tool support for model to model transformations for the DPF
Workbench that translates a model specified over a modeling hierarchy to a model
specified over another modeling hierarchy?

The solution to this is not written in stone, and there are several approaches to how
we can solve this specific problem. The tool requires some implementation but there
are several existing approaches available that provides model transformations as we
mentioned in section 3.3. DPF specifications are basically graphs, more specific, they
are directed graphs. This means that a DPF specification consist of a set of nodes,
arrows and two functions that preserves the source and target node. This makes a
graph based approach to model transformations convenient, but we should also consider
other approaches to model transformations.

• Can we integrate an existing model transformation environment with the Diagram
Predicate Framework Workbench?

We want to introduce the DPF Workbench with tool support that includes model trans-
formations. This has already been successfully introduced to the workbench environment
in Anders Sandven[52]’s master thesis. In his thesis he describe how he integrated a M2T
transformation environment to the DPF Workbench. He integrated a model transforma-
tion environment, Xpand[53] that provides a template based approach to Model2Text
transformation. For this thesis however, we want to verify that we can successfully intro-
duce a model transformation environment that supports translation between di↵erent

37

Chapter 4. Problem Specification 38

DSML’s. But first we have to find a applicable environment that can be integrated with
the DPF Workbench. In section 4.2 we will explore three di↵erent model transformation
tools that supports both exogenous and endogenous model transformations. One aspect
of model transformations that is required to translate specifications in DPF is a set of
transformation rules that describes how a target model is produced. This leads to a
problem for the DPF, because a transformation rule requires modeling elements from
some abstract syntax to specify a structural pattern that is used to locate matches in a
source model.

• How can we include the abstract syntax of a modeling language that is specified
to a corresponding linguistic meta-model and an corresponding ontological meta-
model for a single transformation rule.

In 2007 Ralf Gitzel, Ingo Ott and Martin Schader published a paper where they amongst
other subjects discuss the di↵erence between Linguistic and Ontological meta-modeling.
They provide a definition between the two, “Linguistic metamodeling uses a metamodel
to describe a language syntax without a concrete real-world mapping. Ontological meta-
modeling uses metamodels to describe domain-specific hierarchies”[54]. As it is, the
MOF 2.4.1 standard does not allow for more than a four layered meta-modeling. DPF
has an Ecore specified meta-model that describes the language syntax and potentially
unlimited layers of meta-models that describes the domain-specific hierarchy. Figure 4.1
gives a representation on how specifications are related and regardless of abstraction
layer every specification S1. . . n conforms to one common meta-model.

Figure 4.1: Relationship between layers of DPF specifications.

This model is the linguistic meta-model that DPF provides to describe the abstract
syntax for every single specification created by the DPF Model Editor. However, other
than consisting of an underlying graph and a set of constraints, a DPF specification Sn

is also an instance of another specificationSn+1, and this is where it gets challenging.
Because in the DPF Workbench a specification model Sn is created as an instance from
a specification model Sn+1. We can describe these specification models as ontological
meta-models, since these models describes a domain specific modeling language through
an arbitrary hierarchy of models. We have to find a way around this for our solution,
because model transformation environments that utilize Ecore based models does not
allow Ecore instance models to represent abstract syntax. This could serve a potential
problem when integrating the model transformation environment with DPF. Modeling

Chapter 4. Problem Specification 39

elements that DPF provides are created as nodes and arrows from an Ecore based meta-
model, but are at the same time created according to modeling elements one abstraction
layer higher.

We will discuss how we address and approach these problems in the next chapter. But
first we will look at some related work to model transformations. We have considered the
tools, The Attributed Graph Grammar System[36] (AGG) and Henshin[24] that provides
a graph based approach to model transformation. We have also worked with ATLAS
Transformation Language[55] (ATL), that provides a mixture of model transformation
techniques and is therefore often referred to as a hybrid approach to model transfor-
mation. Through working with these three tools we can find a model transformation
environment that is best suited to be integrated with the DPF Workbench.

4.2 Three di↵erent model transformation environments

These model transformation tools use di↵erent approaches to how model transformations
are applied. We have looked at tools that implement classical rewriting steps that
utilizes the theory behind graph transformations and tools that does this di↵erently.
For this survey we have tackled a specific exogenous model transformation example,
that translates an instance model of UML’s activity diagram to an instance model of
a Petri Nets[56] model. The next two figures provides the abstract syntax of the two
corresponding languages. These figures are represented as Ecore models, that is EMF’s
interpretation of OMG’s MOF. It is convenient to represent these meta-model as Ecore
models since both Henshin and ATL specify transformation rules according to such
models. First we will quickly describe the corresponding abstract syntax for the two
models before we consider the first model transformation tool.

Figure 4.2: Abstract syntax of the source model for this test case.

The abstract syntax for the source model has an arbitrary number of activities and next
elements. Figure 4.2 describes that an activity element can have a name and a kind.
The next element can have an inscription and provides the property to either begin or
end activities. The collection of activities and next elements are provided by a specific
activity diagram that.

Chapter 4. Problem Specification 40

Figure 4.3: Abstract syntax of the target model for this test case.

The abstract syntax for the target model consist of places and transitions. A Petri net
instance must have a place connected to a transition or the other way around, but a
Petri net model can never have two of the same types connected. For this test case we
defined two nodes that specify if a connection is between a place and a transition or a
transition and a place. Note that these two meta-models are a simplified version of the
abstract syntax. For this test case we are more concerned with how the di↵erent model
transformation environments refers to the abstract syntax for the transformation rules.
For each tool, if it is either a graphical editor or a textual editor, we discuss how to edit
transformation rules, which is relevant for how we want to design a transformation tool
for the DPF Workbench. We then consider how the di↵erent tools defines the abstract
syntax for both the source and target model. Next we specify how transformation rules
are created and if the tool provides any application control for these rules. We finish
up by mentioning how the tool applies this model transformation. In section 4.3 we
consider the model transformation environment that can be integrated and provides a
viable model transformation technology that works with the DPF Workbench.

4.2.1 The Attributed Graph Grammar System

AGG is a general development environment for algebraic graph transformation systems
that provide a graphical editor for creating and modifying graphs. The editor provides
a graphical user-interface with several visual editors for applying the principles of graph
transformations. AGG also provide an interpreter and a set of validation tools. The
system is an ongoing research activity of the graph grammar group at the Technical
University Berlin and started in 1997.

Graphical Editor

The graphical editor of AGG, represented in figure 4.4, has several functions to help
the user to define model transformations. In the top left corner of the graphical user-
interface is a tree based editor that provides a set of transformation rules, type graphs,
and host graphs. The host graph represents both the source and target model in a model
transformation, and the type graph represents the abstract syntax for the modeling
languages. The source-target relationship of the host graph is one and the same, but we
will discuss this in future sections, but for the purpose of this thesis we will refer to the
host graph as the source graph.

Chapter 4. Problem Specification 41

Each transformation rule has two visual editors, representing the left (LHS) and the right
hand side (RHS), or the pattern and the replacement graph. In the tree based editor it is
also possible to attach application conditions to transformation rules. This is convenient
if the user wants to specify constraints that restricts the pattern or replacement graph
to be applied accordingly to the specific application condition.

Type graphs are described more in depths in the next section, but roughly said, the
type graph defines modeling elements that can be used to create the source graph and
is similar to how Ecore defines meta-models for EMF. The users can now create model
instances that represents the concrete syntax of a specific modeling language. This
representation of the abstract syntax are represented in a source and corresponds to its
concurrent type graph.

The transformation rules can be extended with Java expressions. This means that
the users can use Java primitives such as strings, integers or float numbers to form
the pattern graph or the left hand side of the rule. However, the users can only bind
attributes that are in a corresponding type graph.

Figure 4.4 also represents some node elements and association elements. These are meta
elements that are initialized in the type graph and are used to model the source graph,
the di↵erent transformation rules and application conditions. The node elements and
association elements also describes the semantics of the type graph. Note that both the
node elements and association elements in the figure has been scaled up for the purpose
of this paper.

Figure 4.4: A model transformation for the AGG Editor.

Chapter 4. Problem Specification 42

Defining Meta-models

Before the source graphs can be created, we have to specify the modeling language for
the source model and the target model. In AGG both the source and the target meta-
model are defined in one common type graph. The type graph represents the abstract
syntax for both the source and target model. If we want to prepare an AGG graph for a
model transformation, we create a type graph with references between source modeling
elements and target modeling elements. AGG is unaware of the relationship between
these modeling elements unless we explicitly initialize them. The relationship between
source and target modeling elements in the abstract syntax has two major purposes
for an exogenous model transformation. The relationship specifies how source modeling
elements correspond to target modeling elements and determines upon execution of
transformation rules that a matched pattern is only found once.

Figure 4.5: Type graph for activity diagram and Petri Net in AGG.

Figure 4.5 represents the type graph for our test case. The abstract syntax contains
nodes and arrows that include a structural multiplicity constraint. The user defines
nodes and arrows for each meta element for both the source and target model. This
is achieved by using either the Edge Type Editor or Node Type Editor and are editors
that correspond to either a node or an edge. The nodes and edges are given names
and graphical properties such as colors or shapes. Nodes represents modeling elements
from the two modeling languages while arrows represents the associations between these
modeling elements. In the type graph we want to distinguish between associations and
correspondences, and therefore we represent a correspondence between a source and tar-
get modeling element as a dashed arrow. The dashed arrow has the same properties as
the association arrow between nodes, but the graphical representation is di↵erent. This
makes the concrete syntax in the source graph easier to read when we are applying the
transformation rules. In figure 4.5 we can see that a RefAct node is defined and is con-
nected between the activity element and the transition element. The same initialisation
is defined between the next element and the place element. This reference edge specifies
that there is a correspondence between Activity and Transition element and between

Chapter 4. Problem Specification 43

Next and Place. For this type graphs there is a structural multiplicity constraint for the
nodes and edges. This means that there can be an arbitrary, or a zero to many number
of instances of these nodes and edges in the source graph.

Defining Transformation Rules

Now the type graph has been initialised and the instance graph of the source model has
been created. But to be able to translate to a target model, we need to create a set of
transformation rules. A transformation rule is defined with an unique name, an empty
LHS graph and an empty RHS graph.

Figure 4.6: Tree based editor for transformation rules.

Whenever changes are made in the two graphs, AGG checks if the LHS or the RHS
conforms to the type graph. The user is unable to insert elements in the two graphs
that are not initialised in the type graph and the users are not allowed by AGG to
create associations between nodes that are not initialised in the type graph. This is
how AGG keep the source and target models consistent. In figure 4.6 we can see the
tree based editor in AGG, that provides the type graph, the source graph and a list
of transformation rules. When a new rule is created, both the LHS and the RHS are
initialised. The users can then specify a graph structure that forms the LSH graph that
AGG use to locate matching patterns in a source graph. The RHS graph represents
the graph structure that the transformation system produces for each located match.
AGG provides two visual editors for these corresponding graphs. However, there is also
a graph that represents the intersection between the LHS and the RHS. In AGG this
graph is edited by creating similar modeling elements in both the LHS and RHS graph
and map these modeling elements with each other.

Chapter 4. Problem Specification 44

Figure 4.7: The LHS and RHS of a rule and a NAC attached.

Figure 4.7 is a representation of the rule transformNextToSimple, with the LHS and the
RHS graph. The LHS contains the graph structure that is used to locate matches while
the RHS contains the graph structure that replaces the located matching pattern. For
this rule the modeling elements that are represented in the LHS are also part of the graph
structure in the RHS graph. Modeling elements that are part of both the LHS and RHS
graph can be mapped together to specify for a transformation engine that these modeling
elements defines a graph structure that is an intersection between the LHS and the RHS
graph. In section 3.5 we introduced the concepts of single and double pushout of graphs
for graph based model transformation tools. A double pushout of graphs includes this
intersection graph for a transformation rule that makes it possible to preserve modeling
elements that is part of both the LHS and the RHS. Modeling elements that is defined
in the LHS graph and not the RHS graph are removed when the AGG transformation
engine applies a transformation rule. For example the transformation rule in figure 4.7
locates the graph structure that the LHS defines in a source graph and inserts a new
graph structure that the RHS defines in the source graph. This transformation rule
will not remove any modeling elements once applied since we have specified that the
modeling elements that is part of the LHS graph are also part of the RHS graph. A
rule can also specify application conditions that can either be a Positive Application
Condition (PAC) or a Negative Application Condition (NAC). Figure 4.7 has a NAC,
activitySimple that makes sure that the LHS of the rule is translated only once for each
pattern match found in the source graph. This is because for each applied transformation
rule we preserve the LHS graph structure and therefore is a potential match the next
time the transformation rule is applied. However, the negative application condition
requires that the matching pattern should not contain any references and therefore is
not a valid matching pattern. Through the use of these application conditions, the users
can create restrictions to how each transformation rule should handle matching patterns
in the source graph. A transformation rule can have multiple application conditions
attached.

Application Control for the Transformation Rules

In subsection 3.4.3 we specified that the application control of a model transformation
handles the location of matches and rule application control. Locating matches in AGG
are designed by some non-deterministic search algorithms that the users have no control
over. AGG does however provide the users with the possibility to explicitly specify how
the transformation rules are applied. By default, the transformation rules are applied
non-deterministically. This means that there are no pattern to how the transformation
rules are applied and the transformation rules can be applied di↵erently on di↵erent
runs. This option is quite useful if the set of transformation rules are independent of

Chapter 4. Problem Specification 45

each other. AGG also provides other ways of applying rules such as applying rules by
layers or by sequences. When the transformation is set to be applied by rule layers, then
AGG introduce the users with an integer that specify transformation rules on di↵erent
layers. This layer number will range from 0 . . . n, where the lowest number is the first
layer and therefore the has first priority. If there are rules with the same layer number,
then these rules will be internally applied non-deterministically. If the rules are applied
by sequence then the rules will be applied from the first element in the tree based editor
and applying the rest of the rules in sequence.

Translating the Source Graph

In section 4.2.1 we described that when applying a transformation rule a matching pat-
tern is located in the source graph and a graph structure from the RHS is inserted in
the source graph. This is special source models in AGG, because the source graph in
AGG represents both the source model and the target model in a model transformation.
AGG’s transformation system provides an in-place model transformation directly on the
source graph. An exogenous model transformation that is specified in AGG usually in-
clude all located matches in the translated graph structure for each transformation rules.
These modeling elements that represents the abstract syntax of the source model can
then be removed through a set of transformation rules after the modeling elements that
correspond to the abstract syntax of the target model is translated. This means that for
an exogenous model transformation we should be careful when applying the transfor-
mation rules non-deterministically. The user can now either press Start Transformation
or do the transformation one step at the time. For the first option AGG will apply
one rule at the time until there are no more matching patterns located in the source
graph. When AGG cannot find any more matches, the host graph is either correctly
translated or there are errors in the rules. The user can also execute the transforma-
tion step by step. This will give the user the same result as the first option, but now
the user can do one match at the time for each rule. AGG utilize both the single and
double pushout approach when executing a transformation rule[36]. Like we discussed
in section 3.5 the single pushout approach removes the graph structure from the LHS
and inserts the graph structure from the RHS in the source graph. If the rules specifies
an intersection graph between the LHS and RHS graph then the double pushout tech-
nique is used. AGG’s transformation engine interpret a transformation rule and applies
the transformation rule accordingly. Another model transformation environment that
similar to AGG utilizes the concepts of graph transformations is Henshin.

4.2.2 The Henshin Project

The Henshin project[57] provides a transformation language and a tool environment
for defining model transformations for the Eclipse Modeling Framework. The Henshin
project is part of the Eclipse Model Framework Technology (EMFT). EMFT acts as
an EMF subproject for new technologies that extends and utilize EMF. The Henshin
Editor was initially developed in a student project at Technical University of Berlin
in 2010, and extended in the bachelor thesis [58] published by Johann Schmidt and
the master thesis [59] published by Angeline Warning. The Henshin project provides a
transformation language based on graph transformations that supports both endogenous
and exogenous model transformations. With the help of a graphical editor, Henshin

Chapter 4. Problem Specification 46

provides the user with an intuitive approach to defining transformation rules. The
Henshin tool environment provides a transformation engine, several editors and a state
space generator.

Graphical Editor

Henshin model transformation environment is integrated as a plugin for the Eclipse
Integrated Development Environment[60] and provides a graphical editor to create and
modify transformation rules.

The users start out with using the Eclipse wizard to create an empty Henshin document.
The Henshin document is based on the commonly known Extensible Markup Language
(XML)[61]. If applicable a Henshin diagram file can be created based on the Henshin
file that gives the users an intuitive approach to creating transformation rules.

The Henshin transformation file is represented in a tree based editor called the Henshin
Model Editor. Figure 4.8 represents the editor that contains a list of transformation
rules. These transformation rules are included under a Module element that represents
the root element for a Henshin model transformation. For this specific example there
are two external Ecore models included in the editor, more specifically the source and
target meta-models. These meta-models are created based on the EMF standard for
creating models and are independent of each other. Please note that a Henshin model
transformation can include 0 . . . n models and therefore is not restricted to have exact
one source and one target meta-model.

Figure 4.8: Tree Based Editor for rules in Henshin.

Defining Meta-models

The Henshin language requires a source and a target meta-model to be able to perform
model transformations. The target meta-model can either be the same as the source
meta-model or defined in another modeling language. Either way, before the users
can start creating transformation rules, the meta-models has to be defined. To define
these meta-models, Henshin utilizes Ecore, that is provided by the Eclipse Modeling
Framework[62]. Ecore models can either be created using a tree based editor, called

Chapter 4. Problem Specification 47

Sample Ecore Model Editor or by using a graphical editor. While the graphical editor
is optional, the tree based editor is mandatory for creating Ecore models, since this
represents the Ecore model.

Initially the user has to create an EPackage element in the newly created Ecore model.
Henshin interpret instances of this EPackage as EObjects and is what Henshin searches
for when the user want to import an Ecore model. This EPackage element can have
several child elements, like for example EClass, EEnum and EData type. For this specific
example we only needed the EClass element to create the nodes for the meta-models.
For each EClass element the users can specify an EReference that connects two EClass
elements. This means that an EReference element defines relations between the nodes
for the meta-models. To give an EClass element properties, the user can create an
EAttribute element. This element can be typed, either by a predefined list of types
or by defining user created EData types. For the purpose of this case study we only
needed to name the di↵erent nodes and therefore we only needed the data type EString.
Through the use of these Ecore elements, we can create the two meta-models from
figure 4.2 and figure 4.3 that was previously presented in this chapter.

Defining Transformation Rules

Now we have defined the source and target meta-model, and imported both of the
meta-models EPackages. We can now use elements from the two meta-models to create
transformation rules in the Henshin transformation language. In Henshin, objects are
referred to as nodes and links between objects as edges. From the meta-models these
nodes represents the EClass elements and edges is a EReference between these EClass
elements. A collection of these nodes and edges defines a graph structure. Each trans-
formation rule in Henshin specifies two graphs that represent the LHS and the RHS.
Note that the graphical editor provides an integrated view to creating transformation.
And therefore Henshin handles assignment of modeling elements to the LHS and the
RHS through the use of stereotypes. Figure 4.9 represents a visualization of the graphi-
cal syntax and includes a transformation rule, “transformSimpleActivity”. On the right
side there is a palette that contains Henshin modeling elements and di↵erent EPack-
ages. The first two EPackages represents modeling elements for the source and target
meta-model. The Henshin Trace Model provides support for including traceable links
for exogenous model transformations in Henshin. The Henshin Trace model provides a
traceable link that keeps track of the translated elements during a transformation. This
model consist of a single class Trace, that has two references called source and target.
These references are of type EObject and therefore can refer to any EMF object. The
Trace model is generic and therefore supports creation of traceable links between any
Ecore models.

Chapter 4. Problem Specification 48

Figure 4.9: A rules represented in the Henshin graphical editor.

The Node, Edge and Attribute modeling elements are used to define the di↵erent trans-
formation rules in Henshin. A new transformation rule in Henshin always have to start
with creation of a new Rule element. Inside this Rule element the users are free to
create nodes, and connect these nodes with edges. The nodes and edges defines a graph
structure that is used to either locate matches in a source model or translate target
modeling elements. Henshin makes sure that these nodes and edges conforms to their
corresponding meta-models. Note that the Node and Edge modeling elements are spe-
cial for Henshin and are used to create the content of the transformation rules. The
Node element has a type that correspond to an EClass while the Edge element has a
type that correspond to an EReference. Note that the Ecore models that are repre-
sented in figure 4.9 has a list of modeling elements that are typed by EClass. These
modeling elements are a shortcut for Henshin to create nodes and creates a Henshin
node with the corresponding type. The Attribute element can be used if attributes are
defined for the classes that are imported. We will come back to the Unit element in
the next section. Henshin distinguish if nodes, edges or attributes are part of the LHS
and the RHS through the use of predefined stereotypes, or action types. Based on these
action types Henshin automatically specifies if these modeling elements defines a graph
structure that is used to locate matches in a source model or produce modeling elements
for a target model. If the action type consist of the sequence “create”, Henshin knows
that this element should be part of the replacement graph, or the RHS. While on the
other side, the sequence “delete” should be part of the pattern graph, or the LHS. The
“preserve” sequence is a bit more special, because nodes or edges in Henshin that is
specified by this action type should be part of both the LHS graph and the RHS graph.
This is done by putting the preserve element in both graphs and then create a mapping
between these two elements to inform the Henshin Interpreter that this represents the
same element. Henshin also has support for application conditions. The action types
“forbid” and “require” are used for defining Negative Application Conditions (NACs)
and Positive Application Conditions (PACs). These actions are supported for nodes,

Chapter 4. Problem Specification 49

edges and attributes. The example rule in figure 4.9 use four of these action types.
The modeling elements in gray represents modeling elements that are part of both the
RHS and the LHS graph, while the modeling elements in green are specified in the RHS
graph. This specific transformation rule will locate a matching pattern in a source model
that is described by an Activity modeling element. The positive application condition
specifies that Henshin only should locate matches that is of kind “simple”. The negative
application condition specifies that a located match that is described by the Activity
class should not have a traceable link. The NAC specifies that the transformation en-
gine does not locate duplicate matching patterns. The first time a match is located a
traceable link is established. Now this specific match is no more a valid match since the
NAC forbids the transformation engine to locate matches that already has established a
traceable link to this modeling element. Note that we have a Trace and a PetriNets that
is both a preserve modeling element. This is because these two are already translated
by another transformation rule.

Application Control for the Transformation Rules

Transformation units are used to administrate the di↵erent transformation rules. Hen-
shin provides several di↵erent units with di↵erent properties. Note that a transformation
rule is also a transformation unit. This means that it is unnecessary to create a unit
in Henshin if our model transformation only consist of one transformation rule. But if
there are more than one transformation rule there has to be a control mechanism that
determines how these transformation rules should be applied. An Independent Unit is
applies rules non-deterministically and is a good solution if the order of applying the
transformation rules is not important. But if the transformation rules requires a very
strict pattern and are dependent of other rules, then a sequential unit are a safe way
to apply rules. The sequential unit forces the Henshin transformation engine to apply
rules in a sequenital order. Figure 4.10 is an example of a sequential unit that will start
applying rules at the black circle and follow the arrow through each given rule until it
is finished.

Figure 4.10: A SequentialUnit main that contains a sequence of rules.

If applicable a transformation unit can also consist of other units, for example if the
user want to either iterate or loop through a transformation rules. The previous section
described an example of a rule in figure 4.9. The sequential unit above the “trans-
formSimple” represents a LoopUnit while the “transformStart” and “transformEnd”
represents a single rule. The loop unit applies a single transformation rule until there
are no more matches found in a source model. This is convenient for the rule, “trans-
formSimpleActivity” since we specified that the rule should only locate matches where
there exist no traceable link. Henshin also has two other units that can administrate
transformation rules, namely ConditionalUnit and PriorityUnit. The ConditionalUnit
follows a if-else pattern, and is used if the user want Henshin to choose between other
units.

Chapter 4. Problem Specification 50

Translating the instance model

Now that we have defined the source and target meta-model, created a set of trans-
formation rules and initialized a control mechanism for these rules it is time to apply
the transformation rules. For Henshin there is two ways to do this. In Henshin the
default engine for executing model transformation is the Henshin interpreter. This in-
terpreter can be invoked either by using the a Eclipse wizard or programmatically using
the Henshin API.

Using the Eclipse wizard is done by opening the Henshin file in the Henshin Model
Editor and right clicking the root object and locate apply transformation. This will
open a wizard where the user can choose a transformation unit. This will either be a
single transformation rule or some transformation unit that applies all other units and
rules. The user also has to select the instance model and can explicitly set parameters
for the rules if this is applicable. If the parameter is set to Ignore then the interpreter
will automatically match the parameter. Now the user has two choices, the first choice
is to preview the result of the model transformation. This will either show the user
a new window with the modifications to the model or a message that the rule or unit
could not be applied. If the user press Transform instead of Preview, the model will be
transformed and saved.

The interpreter can also be invoked programmatically, either as an Eclipse based ap-
plication or as a simple Java application. Henshin provides a API that lets the users
invoke the interpreter through the use of Java code. There is a class HenshinResourceSet
that lets the user load and save models and transformations. When the instance model
and Henshin module is loaded into the resource set, the transformation can be applied
through the use of the Henshin Engine class. This is where Henshin finds and translates
matches found in the instance graph. The user also has to specify the main transforma-
tion unit from the Henshin module. Both the engine and the unit can be loaded into
the UnitApplication class. And this class has a method called execute that lets the user
execute the model transformation. If the transformation was executed without errors,
then the instance model can be saved with the translated changes. The Henshin API
lets other users use the power of Henshin in their own program.

4.2.3 ATL Transformation Language

ATL[63] (ATL Transformation Language) is a model transformation language and is an
implementation of the QVT[28] standard. It provides ways to produce a set of target
models from a set of source models. ATL is maintained by OBEO[64] and AtlanMod[65]
and was first initiated by the AtlanMod team, previously called the ATLAS Group,
located at the University of Nantes in France. The initial version of ATL was created In
2004, where ATL became part of the Eclipse Generative Modeling Technologies (GMT)
[66]. The goal of GMT is to produce a set of research tools in the area of Model Driven
Software Development. The ATL Integrated Development Environment (IDE) was later
promoted for the Eclipse M2M project in January 2007.

There are developed several tools that has support for a declarative approach to model
transformation. For the purpose of this paper, we will explain this approach with the
focus around the Atlas Transformation Language (ATL). ATL is a hybrid model transfor-
mation approach, that is a transformation language that combines other model to model

Chapter 4. Problem Specification 51

transformation approaches. For example, ATL provides transformation rules that can
be either fully declarative or fully imperative or a mixture of both.

Figure 4.11: Model transformation process for Activity2PetriNets.

Figure 4.11 gives us an idea of how the ATL transformation from an activity diagram
to Petri net are handled. We want to generate a instance of PetriNets, that conforms
to its own meta-model. This is generated from a source model, Activity Instance, that
conforms to its respective meta-model. The created transformation Activity2PetriNets
is expressed in the ATL transformation language, that conforms to its own meta-model.
These three meta-models conform to the meta-model Ecore. So this makes Ecore a
metameta-model to represent the meta-models of Activity, ATL and PetriNets.

ATL has to be configured properly before the user can execute a model transformation.
In this configuration both the location of the source and target meta-model has to be
specified. The user also has to specify what instance model that should be translated.
And lastly the user has to create a new file that can be specified as the target instance
model for the ATL run configuration. The user can then initiate the transformation by
running this as an ATL transformation.

Textual editor

ATL can be compared to a programming language, because it is basically a transfor-
mation language that provides a concrete textual syntax. ATL is a text based transfor-
mation language, and is build around the Object Constraint Language (OCL) [14] with
some additional predefined functions. ATL transformations is stored in a file extension
called “.atl” These ATL files can contain di↵erent kind of ATL units and are defined
in its own distinct ATL file. These di↵erent ATL units are ATL modules, ATL queries
and ATL libraries. Libraries can be used to create independent ATL libraries that can
be imported to di↵erent types of ATL units. The module unit specifies the di↵erent
application rules for a model transformation. And the Queries are used when the users
want to compute primitive values from the source models.

Now that we have specified these three ATL units, we can describe shortly how we can
use the ATL transformation language to create model to model transformations. For

Chapter 4. Problem Specification 52

our case study, we only need the ATL modules. An ATL module corresponds to a model
to model transformation. This unit enables developers to specify the way to produce a
set of target models from a set of source models. The source and target models of an
ATL module must be consistent with their respective meta-models.

Defining Meta-models

Defining meta-models for the ATL language is defined by the modeling language Ecore.
Since defining the meta-models are defined similar as Henshin, see chapter 4.2 for more
details.

At first, the user start out with a blank ATL file. Since we are working in the ATL
Integrated Development Environment for Eclipse, we want to start the document with
defining the path to the source and the target meta-model. The reason for doing this
is to achieve auto completion from elements defined in the Ecore meta-models. This is
convenient for the users when creating transformation rules.

Figure 4.12: Two simple rules for Activity2PetriNets in ATL.

Next the file is composed of four di↵erent elements. The first element is the header
section, where the user can give the module a name and name the variables corresponding
from the source and target models. The module name has to be identical to the name
of the ATL file.

We also need to specify the source and the target meta-model. From figure 4.12 we can
see that the target meta-model is initialised with the keyword create, and the source
meta-model is initialised using the keyword from. The user can also import some existing
libraries if needed. This import section is however optional. Importing meta-models are
handled a bit di↵erently in ATL compared to Henshin. In ATL the meta-models are
imported explicitly while in Henhsin they are imported implicitly before they can be
used in modifying the transformation rules. For ATL the user has to configure where
both the source and the target meta-model are located through a configuration page.

Chapter 4. Problem Specification 53

The next element is a set of rules that defines how the target models are generated
from the source models. These rules are used to implicitly match source elements and
produce target elements. In figure 4.12 we have examples of two rules, namely the rule
for transforming the start activity and the rule for transforming the end activity. We
can see that for each rule we specify what we want to translate from and what we want
to translate to. We will describe transformation rules in more details in the next section.

The last element in a ATL module is a set of helper functions. This collection of helpers
can be compared to Java methods. These helper methods can be used to make the
transformation rules easier to read.

Transformation Rules

A rule in ATL describes how a target model should be generated from a source model.
In ATL there are three kinds of rules, the type matched rules and the lazy rules are both
fully declarative while the called rules are imperative. These rules has an input pattern
and an output pattern. The input pattern can have a list of source model elements that
is part of a rule in ATL by defining several input pattern elements. Each input pattern
element has to have a mandatory type that corresponds to a metaclass defined in some
meta-model. Each rule corresponding input pattern can also specify optional conditions
that are expressed as OCL expressions. Both the type and an optional condition specifies
which elements from the source model that is matched for each rule. The output pattern
defines how the target model elements are created from the input model.

The matched rules provides an declarative approach to creating transformation rules
in ATL. The users can specify from which kinds of source elements the target elements
can be generated from and how the generated target elements should be initialized. A
matched rule finds a match according to the type of source model element and generate
target model elements from these matches. A new matched rule is defined by the keyword
“rule” and has two mandatory and two optional sections. The mandatory sections
specifies the input pattern and the output pattern while in the first optional section
the users can declare and initialize local variables. Note that these variables can only
be used in the scope of each rule. The second optional section includes an imperative
section The type that is introduced in the input pattern conforms to a meta-element in a
meta-model of the source model. This rule will then generate target elements according
to each match in the source model.

Figure 4.13 shows a simple rule, Activity2StartPlace that wants to translate Activity
source elements to some target elements. This rule specifies the keyword from for the
input pattern and to for the output pattern. For this example we want to find matches for
one source element that is of type Activity that conforms to the meta-model Activities.
We also provide additional properties for this input source element, where we only want
to find matches that conforms to the type Activity and has the name “start”. The rule
specifies that we want to generate three target pattern elements p, t and a t from this
matching type. These generated target elements conforms to the meta-model Petrinets
and specifies that these generated types should generate attributes from the source
pattern element. The generated target model elements is initialized with attributes
from the matched source pattern element.

Chapter 4. Problem Specification 54

Figure 4.13: An example of a matched rule in ATL.

If applicable the users can add an optional condition for each rule to check for certain
matches for this input element. This condition is expressed as an OCL expression and
gives the user the possibility to restrict the searches of the source elements.

The second type ATL rules are Lazy rules. These lazy rules will never be applied when
a model transformation in the Atlas Transformation Language is executed. These lazy
rules can only be applied to a model transformation when they are called from another
of the two rules. These lazy rules are created similar to the matched rules.

The third and final type for an ATL rule is called Called rules. A called rule has to be
called from an imperative section from either a match rule or from another called rule.
A called rule is created similar to a matched rule, namely with a rule keyword. One
thing that is special with a called rule is that it does not have to match source elements
from the source model.

Execution of an ATL transformation

Figure 4.14 describes the architecture of the transformation language. From the figure
we can see that we have an association between EMF and Ecore models. This are the
meta-models that are expressed using EMF’s Ecore model. These meta-models are then
translated through a model handler that compiles these Ecore models to the ATL Virtual
Machine. Where these meta-models can be used both in creating ATL programs and in
ATL’s internal interpreter. The ATL compiler translates the ATL file into a new ASM
assembler file, that ATL can use to launch a model transformation. This assembler file
contains the compiled code of the corresponding ATL file.

Chapter 4. Problem Specification 55

Figure 4.14: Internal infrastructure of for ATL.

The default semantics for executing a set of transformation rules specified in ATL can
be described in three phases. See ATL User Manual[55] for more information.

The first phase is an initialization phase. This phase consist of amongst other things
to initialize the trace model and the module of the ATL transformation. The trace
model in ATL has one important function, and that is to create a trace link that points
to the matched source input elements and the corresponding generated target output
elements. The trace model in ATL works as an implicit tracing mechanism that specifies
relationships between the source element and its corresponding target elements by using
a native type called ASMTransientLink[42]. For every time a transformation rule is
matched to a source element, one ASMTransientLink is created. To this transient link
the name of the transformation rule provided together with the source element and the
target elements. These links are added to a collection that is stored internally for ATL.
This means that the users of ATL cannot access these links after a model transformation
has finished executing. However, as shown by Andrés Yie and Dennis Wagelaar[42], that
gaining access to these ATL traces can be done explicitly by creating transformation rules
that generates a tracing model based on the internal tracing information provided by
ATL.

The next phase consist of finding matches in the source pattern of the matched rules.
This is done by the ATL transformation engine that searches for valid matches. A match
is valid when all input pattern elements are found amongst the source model elements
and any OCL expression for that matched rule is valid. The transformation engine also
allocates the target model elements based on the declared output pattern into memory.
At this point the target model elements are only allocated, they are initialized in the
final phase. For each match found, there is created a trace link that has a source link
to the matched source elements and a target link to the generated target elements. The
generated target elements are not given any attributes or properties in this phase. This
phase create target elements from matches found, and create a trace link between them.

The final phase of for executing an ATL module is to initialize the target model elements.
At this stage each allocated target model element are given attributes and features that
corresponds to the matched rule. The ATL transformation engine now use the trace

Chapter 4. Problem Specification 56

links to determine the matched source elements and the generated target elements.
This operation is called resolveTemp, that returns the reference from the target model
elements that where generated in the second phase and to the corresponding source
model element. Now that these three phases is finished the ATL transformation engine
can execute the imperative code sections defined for the module.

4.3 Model transformation environment for DPF

After working with the three model transformation environments in the previous section
we decided to try and integrate Henshin with DPF. In this section we will describe why
Henshin is the better choice of the three considered environments to integrate with DPF.
Henshin[24, 57] is a relatively new installment in the world of model transformations.
The environment was initially created three years ago, in 2010 and is marked as an
Eclipse Incubation project. The purpose of the incubation phase is to establish a fully
functioning open-source project. In theory an integration of Henshin with the DPF
should be possible, since Henshin applies model transformations based on Ecore models
and DPF models are basically represented as Ecore models. This presents a problem
with integrating AGG with DPF. In EMF the root of all modeling objects is an EObject
that has no references to a Java Object. AGG could be integrated with DPF, but the
problem is that this would require an extensive amount of manual coding. We could
use AGG as a general purpose graph transformation engine in a java applications. We
would have to create the source model as an AGG graph and a type graph based on
the source and target modeling formalism that DPF provides. AGG provides an API
that conveniently let us create type graphs, source graphs, transformation rules and
application conditions.

Figure 4.15: Proposed solution for integration of AGG with the DPF Workbench.

Figure 4.15 represents a proposed solution how to integrate AGG together with a DPF
transformation tool. The figure represents a source modeling formalism on the left side,
a target modeling formalism on the right side and a model to model transformation done
with AGG in the middle. The figure informs us that we have to generate four models
to be able to do this in AGG. First we create the abstract syntax for an AGG source
graphs by generating a joined type graph from a source modeling formalism and target
modeling formalism. Then we have to generate the source input specification into a
source graph that at the same time conforms to the joined type graph. Note that we do
not mention the transformation rules since we have to generate these regardless of what
model transformation environment we integrate with the DPF workbench. After the
AGG transformation engine have executed the transformation rules we have to generate
a target specification based on the produced target graph. This leads to some potential
problems. The program that generates a source graph and a target specification has to

Chapter 4. Problem Specification 57

be solid and not contain any flaws. Another problem is to keep the models consistent
throughout the model transformation. How can we be certain that the target graph is
consistent with the target specification? It is easy to loose consistency when changing
a model manually from a target graph to a target specification. We could use AGG to
do this, but that leads to many potentially factors that could go wrong. With Henshin
and ATL we are not required to do anything extra with these models. Since both
environments has support for including Ecore models as meta-models and requires an
instance model of an Ecore model as a source model to apply a model transformation.
Therefore AGG can be integrated with EMF with some additional work, but Henshin
and ATL is a more viable choice for DPF, since we can use this Metamodel.ecore as
a meta-model and the source specification as input model directly in the other two
environments.

Now we need to decide if we want to try and integrate the hybrid model transformation
environment, ATL or the graph based model transformation environment, Henshin. In
section 2.4 we discussed that a DPF model is an extension of the Generalised Sketches
formalism which is basically a directed graph. Then a specification consist of a set of
nodes, edges and two functions that preserve a source and a target node for all edges. A
model transformation in Henshin is based on the concepts of graph transformations and
category theory. We can then be certain that Henshin can interpret a source specification
as a directed graph. Henshin transformation is also based on the two graph transfor-
mation styles single (SPO) and double pushout (DPO) that we discussed in section 3.5.
And we recall that the DPO approach provides a dangling condition that ensures that a
model transformation does not result in any edges that are missing a source or a target
node. We want to create a tool for the DPF workbench that provides the following.

• Concrete Graphical Syntax. We want to be able to create transformation rules
based on graphical syntax that the DPF Editor provides.

• Generic. We want our tool to work for an arbitrary source and target meta-model
regardless of abstraction layer.

The tool is required to create a set of transformation rules based on some model transfor-
mation language and we want these transformation rules to be generic. This means that
we create a set of transformation rules based on an arbitrary source and target meta-
model. The only aspect of these meta-models that is consistent is that they contain a
list of nodes and arrows. This means that regardless of abstraction layer a specification
is specified by a set of nodes and arrows. The reason for why we decided to try and
integrate Henshin within the DPF workbench is provided in the three items underneath.

1. We want to create a tool that use a simplified version of the DPF Editor to create
transformation rules that provides a concrete graphical syntax. DPF models are
already based on category theory and provides a graphical syntax.

2. Through the use of the Henshin meta-model we can generate a set of transforma-
tion rules that are based on the abstract syntax of the source and target specifica-
tion. We can define a set of transformation rules in Henshin as a java application
with the help of the API that Henshin provides.

Chapter 4. Problem Specification 58

3. We can utilize the concepts around graph transformation that provides a left hand
side, a right hand side and an intersection graph. Through these three graphs we
can in Henshin use the single or double pushout approach when applying a set of
transformation rules.

The problem with integrating Henshin with DPF is that Henshin is based on the EMF
technology, and therefore utilize OMG’s MOF. Henshin supports out of the box model
transformation that translate instance models that conforms to an Ecore based meta-
model. These instance models provides the concrete syntax of a modeling language
and are described by a corresponding meta-model that represents the abstract syntax.
This meta-model is provided accordingly to the second layer of the Meta-Object Facil-
ity. This means that Henshin provides model transformation according to EMF’s two
layered modeling environment. DPF on the other hand provides initialisation of a po-
tential endless hierarchy of meta-modeling, and therefore does not match the steps MOF
provides to create the abstract syntax for a Domain Specific Language. We know that
a transformation rule in Henshin requires references to meta-modeling elements from a
source meta-model and a target meta-model. What makes a DPF specification special
is that it is an instance model of both an Ecore based meta-model and another specifica-
tion. This means that a specifications concrete syntax is typed by the abstract syntax of
a specification that is one abstraction layer higher. In DPF we can create an arbitrary
level of meta-models and therefore two di↵erent Domain Specific Modeling Language
can be defined over a di↵erent abstraction layer hierarchy. The Henshin environment
has strict guidelines on how models are imported and used. These models are required
to be created accordingly to the Ecore model provided by EMF. Henshin can then utilize
these models to create a graph pattern that structure both the LHS and the RHS graph
of a transformation rule. Now the LHS graph contains a graph structure that is is used
by the transformation engine to locate matches in an instance model that conforms to
the specified Ecore model.

For our tool we can structure a set of transformation rules in Henshin based on this
common meta-model, Metamodel.ecore that all specifications S1. . . n conforms to. We
have to threat all specifications similar if we want the tool to provide a generic model
to model transformation. The challenge with integrating Henshin in a language work-
bench that provides meta-modeling at arbitrary layers of abstraction is not in the source
specification we want to translate, but in the instance specification that the source spec-
ification corresponds to. This proves to be a problem for Henshin, because we cannot
import an instance model of an Ecore based meta-model into the Henshin model trans-
formation environment. We can do changes to an instance model by using Henshin, but
the transformation language can only import and utilize models that conforms to the
Ecore meta-model. To solve this for DPF specifications we expand transformation rules
in Henshin with application conditions. This means that we restrict the LHS graph
to locate matching modeling elements in an instance source specification based on the
abstract syntax that another specification provides. The next chapter provides an ex-
planation on how we integrated Henshin for a transformation tool that provides model
to model transformations for the DPF workbench.

Chapter 5

Problem Solution

5.1 Integrate Henshin with DPF

DPF is a a framework where it is possible to create arbitrary levels of meta-models. That
gives the users the freedom to define a well formed domain specific modeling language
and to define constraints for each specification at each level of meta-modeling. The
framework provides the possibility to define specifications that specify underlying spec-
ifications. Where each specification Sn+1 defines the abstract syntax for a specification
Sn. For DPF to be a framework that follows the visions of model driven engineering it
needs to have support for automation of specifications over di↵erent levels of abstraction.
It already has support for some cases of model transformations. There is one natural
model transformation for DPF when specifying a new specification. A new specification
will always be specified by a modeling language that corresponds to a specification Sn+1.
These specification may either be a user created specification or the default specification
provided by the framework, that conforms to it self. The creation of a new specification
can be viewed as the first support for automation over levels of abstraction for models
that the Diagram Predicate Framework povides. In 2012 Anders Sandven published his
master thesis[52], where he implemented support for generating source code with the
DPF Editor. DPF does not provide support for applying an exogenous model transfor-
mation to a specification described in one domain specific modeling language to a model
expressed in another domain specific modeling language. To achieve this we want to
integrate Henshin transformation language[67] to the framework.

Figure 5.1: Using Henshin transformation language to translate a specification Sn.

59

Chapter 5. Problem Solution 60

Figure 5.1 explains how we want to integrate the Henshin model transformation language
with the Diagram Predicate Framework. Henshin provides a transformation language
and a transformation engine. We use the Henshin transformation engine to read an
instance specification Sn and write an instance specification Sm. To achieve this the
transformation engine executes a set of transformation rules written in the Henshin
Transformation Language. These transformation rules refers to the abstract syntax for
the specification Sn+1 and specification Sm+1 that the source and target model are
typed over.

Figure 5.2: Progressively workflow for the problem solution.

Figure 5.2 provides a diagram that describes in five steps how the editor progress from
creation and execution of transformation rules. We can see that this diagram is extended
from the previous figure 5.1. The figure then explains that step 5 use the Henshin trans-
formation engine that reads a specification Sn and writes a specification Sm. But before
we can apply the actual transformation we have to consider how the DPF Transforma-
tion Editor provides a set of Henshin transformation rules.

1. At the first step we still have to provide a source modeling formalism that contains
a specification Sn+1 and a target modeling formalism that contains a specification
Sm+1. These specifications has an underlying graph that contains nodes and arrow
that represents the abstract syntax for the source and target specification.

2. Step 2 consist of creating a new transformation model in the DPF Transformation
Editor. This new transformation model has references to a source modeling for-
malism Sn+1 and a target modeling formalism Sm+1. With both the target and

Chapter 5. Problem Solution 61

source modeling formalism we create a Sn+1 [Sm+1 specification that we use for
typing purposes for the transformation rules. An empty correspondence graph is
also generated.

3. Step 3 focus on creating the transformation rules through defining a set of pro-
ductions, where one production represents one transformation rule. A single pro-
duction specifies a LHS, RHS and an intersection graph that refer to this common
type specification, Sn+1 [Sm+1. At the same time corresponding objects are
initialized by the user to specify the relation between source modeling elements
and target modeling elements.

4. In step 4 we generate a set of Henshin Transformation Rules from these productions
and capture the correspondence between objects by specifying traceable links.

5. In the final step we can apply these transformation rules to a Henshin transforma-
tion engine and produce a target specification Sm.

One major challenge was processing Henshin transformation rules from modeling ele-
ments that is represented in the source and target modeling formalisms. These five steps
describes the workflow of the DPF Transformation Editor. In the next sections we will
explore the most essential functionality of these five steps and explain how we can inte-
grate Henshin with the DPF workbench. But first we will describe how a transformation
rule is modelled in the Henshin model transformation language.

5.2 Henshin meta-model

The Henshin transformation language provides a meta-model that is an EMF based
model and uses the Ecore meta-model for typing purposes[67]. Since this model is
created based on EMF we know that EMF will generate interfaces and a factory that we
can utilize to implement Henshin transformation rules in Java. We can specify a pattern
graph and a replacement graph for each transformation rule based on the factory class
that Henshin provides. In the following we will address what elements a transformation
rule in Henshin consist of based on the Henshin meta-model for a transformation rule
represented in figure 5.3. The figure is obteined from a paper that Thorsten Arendt,
Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele Taentzer published in
2010 on the Henshin transformation language where they provide the meta-model for
defining a single transformation rule[67].

Figure 5.3: Henshin meta-model for a transformation rule.

Chapter 5. Problem Solution 62

A Rule in Henshin represents a transformation rule that has a name, a description
and three properties. The first property disables or enables the transformation rule,
while the two other properties lets the user enable or disable injective matching and
the check dangling condition. The rule class works as the root for all other elements
that are represented in figure 5.3. A new rule defines a left hand side and a right hand
side Graph. The content of the LHS graph represents the model pattern used to locate
matches in an instance graph while the RHS represents the model pattern that is created.
The LHS and RHS graph is formed by creating nodes and edges. Nodes refers to objects
in an instance graph and edges refer to references between objects. An edge has a source
and a target node, while a node can have a collection of incoming and outgoing edges.
The nodes can also have a set of attributes attached. Nodes, edges and attributes all
have two common properties, and the first one is that they all have a type.

Figure 5.4: A simplified subset of the Ecore meta-model.

Figure 5.4 represents a small fraction of the Ecore meta-model and how Henshin mod-
eling elements are typed by either an EClass, EReference or EAttribute. For example a
Node that is typed by a specific EClass will only be matched to objects of this type in an
instance graph. These nodes and edges are represented under a graph and form a pat-
tern. Together with the LHS and the RHS these patterns is either used to find matching
patterns in a source model or to create the corresponding pattern for a target model.
The second property that these three have in common is that they have an action type.
Action types are predefined stereotypes for Henshin and specifies how these three Hen-
shin modeling elements of a graph in Henshin behaves when applying a transformation
rule. An action type could specify if a graph element is part of an application condition,
the replacement graph, the pattern graph or an intersection graph. A Mapping speci-
fies how Henshin defines the intersection graph. This is Henshin modeling elements that
should be included in both the LHS and the RHS graph. This means that these ojects
should be part of the matching pattern, but should not be deleted. A mapping has two
properties, namely an origin and an image. The origin property refers to a given node
from the LHS grph, while the image property specify a mapping to a node in the RHS
graph. So far we have a rule that can have two graphs and a set of mappings.

A rule can also specify a Formula that determines restrictions for match searching for
this rule. A Formula modeling elements is a child of a graph and defines application
conditions in Henshin. This formula class can either be an u-nary logical operation, a
binary logical operation or a nested condition. The first logical operation operates on
a single operand while the second operates on two operands, where these operands are
represented as a conditional statement that is either true or false. A rule can be applied
to a instance graph if and only if all application conditions are valid. We can basically
have a unlimited nested formulas in Henshin, since a binary formula can have a right
and left Formula, that can again be of type binary formula. Henshin however is only

Chapter 5. Problem Solution 63

concerned whether this formula is valid or invalid when a transformation rule is applied.
A nested condition is required if we want to have nodes that are part of the LHS graphs
or the common graph, that is the intersection of the LHS and RHS graph. A nested
condition provides a graph and a set of mappings to elements that are part of the LHS
or common graph. This graph is child of a nested condition and contains nodes, edges
and attributes that form a structural pattern that specifies an application condition. We
can observe that transformation rules can have several number of application conditions.
A binary formula can be of type Or or And and provides the possibility to nest other
binary formulas. If the structure of a binary formula is the latter, then all the application
conditions from both the right and left formula has to be be valid for a transformation
rule to be applied to a instance graph.

5.3 DPF Transformation Editor

With the Eclipse Modeling Framework we created an Eclipse plugin where users can
create and modify transformation rules. Figure 5.5 provides the structural data model
that we use to generate code for the model implementation and the plugin implemen-
tation. The two classes Transform and Production are the two domain classes that
together defines this domain specific modeling language that lets users create transfor-
mation rules. The Transform class represent the DPF Transformation Editor and has a
source meta-model and a target meta-model, that corresponds to a source specification
and a target specification. If these two models are the same model, then the model
transformation is an endogenous model transformation and if the models are di↵erent,
then we have an exogenous model transformation. We also have the file location on the
storage unit for the source and target meta-model. The rules represents a collection
of the transformation rules. These rules are typed by a Production and represent one
single transformation rule. A transformation rule has a name and contains a graph that
is stored internally for each rule. This graph contains a pattern of nodes and arrows
that the user can edit to form a LHS graph and a RHS graph. A single Production also
has several collections that contains nodes and arrows. These collections are utilized by
Henshin to generate transformation rules.

Figure 5.5: The domain model to create a DPF model transformation editor.

Chapter 5. Problem Solution 64

The user has to invoke the file creation wizard for the DPF Transformation Editor.
Other than choosing a project folder and a name for this new editor file, the user has to
specify what model is the source meta-model and what model is the target meta-model.
If the user do not specify a target meta-model then the file creation wizard will interpret
this as an endogenous model transformation.

The DPF Transformation Editor plugin has two editors that users can interact with. The
first is the master editor for the plugin and contains a list of the transformation rules,
where users can create, read, update and delete rules. The second editor is administrated
by the master editor, and each time a new transformation rule is chosen, a simple version
of the DPF editor is opened with its corresponding transformation rule. This editor is
created from the Graphical Editing Framework (GEF) and is a graphical editor that
includes a palette. This palette is the same palette that is used in the DPF Model Editor
and contains modeling elements from the source meta-model and the target meta-model.

Figure 5.6: Three subgraphs for each transformation rule in the editor.

These nodes and arrows are used to create the internal graph for each corresponding
rule. For each rule the users can uniquely map nodes and arrows to three subgraphs
represented as lists. Figure 5.6 represents the left, right and common subgraphs, where
each corresponding subgraph has a list of nodes and arrows. Each subgraph represents
a di↵erent part of a transformation rule according to graph transformation. The left
subgraph represents the LHS graph of a rule, while the right subgraph represents the
RHS graph. The common subgraph represents the intersection between the pattern
graph and the replacement graph. It is vital for the model transformation to work that
all the nodes and arrows are mapped to one of these three graphs. This is entirely up to
the user, because the nodes and arrows from the LHS graph have to be created in such
a way that the graph can be matched in an instance graph.

Now that a list of transformation rules has been specified the user has to initialise the
model transformation environment. This is done through three steps.

1. Generate Correspondence Graph. The first thing the user has to initialise a
graph that contains the correspondence objects. This is important since Henshin
cannot foresee how modeling elements from the source model are related to mod-
eling elements from the target model. This relation has to be specified before we
can create the Henshin model transformation environment.

2. Generate Henshin Rules. Before we can use the Henshin model transformation
language we have to provide a module that contains a set of transformation rules.
And to achieve this we have to translate our transformation rules we create in the
editor into Henshin executable rules.

Chapter 5. Problem Solution 65

3. Apply Model Transformation. After the user has created a correspondence
graph that bind objects from source and target model and translated transforma-
tion rules from the editor to Henshin executable transformation rules. We can
now apply the transformation rules through programmatically invoking the Hen-
shin interpreter.

5.4 Generate Correspondence Graph

The Henshin transformation language refers to modeling elements from a source spec-
ification and a target specification when creating transformation rules. But we have
to define how modeling elements from a source model is translated to a target model.
Henshin is unable to figure out how source modeling elements are related to target mod-
eling elements unless this is provided explicitly. We can create a new DPF model that
presents all the nodes and arrows from the source meta-model and target meta-model as
nodes. Figure 5.7 express how we want to implement this for our model transformation
environment.

Figure 5.7: The solution expanded with a specification for the correspondence objects.

Now we have a created a new DPF model contains a list of nodes for all node and arrow
types from the source specificationSn+1 and target specificationSm+1. We then provide
a new modeling element that is a bridge element between a source and target modeling
element. We can specify an arbitrary number of these elements that binds nodes and
arrows from a source model to nodes and arrows from a target model. This DPF model
specify the correspondence graph between source and target meta-models. We can now
refer to this DPF model when creating Henshin transformation rules to extract the
corresponding objects. We can also do this explicitly when creating the transformation
rules in the DPF Transformation Editor by modeling a new trace object that represents
a trace between a source modeling element and a target modeling element. We use this
trace object or the correspondence graph to determine how we translate a DPF model.
We create a trace object that has a source reference to every matching node and arrow
that the transformation engine can locate and a target reference to the created nodes

Chapter 5. Problem Solution 66

and arrows. The next section will address these traceable links in more detail together
with how we generate Henshin transformation rules.

5.5 Generate Henshin Rules

We utilize the meta-model represented in figure 5.3 to create transformation rules in
Henshin. We use the factory that is provided by EMF for Henshin model transformations
to achieve this. We start with creating the root element that is required for a Henshin
model transformation and import EPackages that is needed to define the content of a
transformation rule. We need to import two models if we want to translate a specification
with Henshin. The first model is the corresponding meta-model for all specifications and
the second model is the meta-model for including traceable links in Henshin. We will
describe the purpose of these traceable links in more detail in subsection 5.5.1. The
transformation language requires models that define the abstract syntax for an instance
model to be able to specify modeling elements for both the LHS and the RHS of a
transformation rule. We can use meta-elements provided by these two models when
defining new nodes, edges and attributes in Henshin. These types are EClass for nodes,
EReference for edges and EAttribute for attributes.

For Henshin we create one rule for each production provided by the editor, where the
name of the rule is acquired from the production. Henshin provides a LHS, a RHS graph
and a collection of mappings for each rule. We can create a graph structure for the LHS
and the RHS based on the subgraphs that a production provides. Modeling elements that
form a pattern in the LHS are used to find a match in a source model, while modeling
elements that form a pattern in the RHS are used to create new elements or replace
these elements. Henshin also include an intersection graph for each rule. This graph is
not represented as a physical graph like the LHS and the RHS are, but is represented
as an underlying graph that is formed from these two graphs. The intersection graph
is represented by having elements in both the LHS and the RHS graph with mappings
that distinguish that these elements are one and the same. Now we have the LHS
graph, the RHS graph and the intersection of these two graphs, which was mentioned in
section 3.5. In this section we introduced double and single pushouts of graphs. Henshin
has an arbitrary mixing of these graph transformation styles.

For each rule we created in the DPF Transformation Editor we have defined a pattern,
that either corresponds to a left hand side, a right hand side or a common graph. This
pattern consist of nodes and arrows that together form a graph. For each node and
arrow, we create a Henshin node that is either typed as a Node or as an Arrow. An
Arrow has to be represented as a Henshin node since it is defined in the meta-model for
a specification as an EClass. Now we have to connect Henshin nodes with edges. An
edge has three parameters, namely source, target and reference. In Henshin we create
an edge with a source Henshin node and a target Henshin node. How the reference is
typed depends on how the source and target node refer to each other in the specification
meta-model. Figure 5.8 explains a simple example on how the relationship between a
node and an arrow are handled for a specification.

Chapter 5. Problem Solution 67

Figure 5.8: Example of how nodes and arrows are related for a specification.

This is a representation on how DPF models relate to one another. We can have an
arrow that has a target and a source node, while every node can have a list of both
incoming and outgoing arrows. So this means that a Node and an Arrow have a similar
relation in DPF models, where source and outgoings references represents the same
relation but are typed di↵erently. It is however easier to coupe with the arrows when
creating transformation rules, since an arrow has an one-to-one relationship, meaning
that an arrow has one source node and one target node. How the typing for an edge in
Henshin is specified depends on the Henshin source and target node. These nodes are
typed by a corresponding EClass type from the specification meta-model, that is a Node
and an Arrow. An edge in Henshin can specify a relation between two other Henshin
nodes depending on how references between Node and Arrow are typed. According to
figure 5.8 we have two references between arrow and node and two references between
node and arrow. If the source Henshin node for an edge is typed by Arrow then the
available references are source and target. On the other side if the source Henshin
node is typed by Node then we have a zero to many relationship in the two references
incomings and outgoings. When we define relationships between two Henshin nodes we
use the source and target reference. This is because this is an one to one relationship
between two nodes and therefore we can always find the source and target node for a
given arrow. This means for every Henshin node that are typed by Arrow we have to
specify two relationships for this Henshin node. This is done by creating two edges in
Henshin, where one refer to source node while the other edge refer to target node. This
is achieved by specifying the Henshin node that is typed by Arrow as source for both
edges and switch between source and target as reference for each target Henshin node.

At this moment the pattern on the left hand side and the right hand side graph are
not typed. The pattern conforms to the meta-model for a specification, but this is the
case for all specifications, on every level of meta-modeling. However, these specification
models are typed by another specification, and this is where we can retrieve the types
for every node and arrow. In the specification meta-model both the Node and Arrow
class has a reference type to another Node and Arrow. Figure 5.9 represent the LHS for
the DPF Transformation Editor that we want to generate Henshin rules from. The idea
is to create an application condition for every node and arrow with their corresponding
type node and type arrow. The type nodes and arrows have an attribute called name
and is a string. We can use this attribute to specify a positive application condition
in Henshin. A positive application condition in Henshin has an action type, require.
This means that all application conditions for Henshin that is typed by this action are
required to be valid when searching through a source model for a transformation rule to
be applied.

Chapter 5. Problem Solution 68

Figure 5.9: Example on how we want to handled types for a DPF model.

This also leads to an important change in our Henshin rules, because we have to include
one more node and edge for every node and arrow. We have to create a new Henshin
node that represent the type node and type arrow. We also have to create a new
Henshin edge that define that this Henshin node is typed by another Henshin node.
This is because when Henshin is locating matches in an instance graph we want the
transformation language to locate matches for nodes or arrows that are typed by a
specific node or arrow. Figure 5.10 explains how we solve this in Henshin. We have a
pattern graph or LHS on the right and an application condition graph on the left. This
specific transformation rule in Henshin specifies a simple LHS graph that has an Arrow1
element with a source Node1 and target Node2 elements. Note that here the Arrow1
element is represented as a node and not as an arrow like figure 5.9. The reason for this
is because an arrow is represented as an EClass in the common meta-model. For this
example we focus on the Node1 element.

Figure 5.10: Defining a transformation rule in Henshin with typing for a specification.

We discussed in section 5.2 that an application condition is represented as a Formula in
Henshin, and to solve typing of nodes and arrows in DPF we need to create this Formula
as a nested condition. This is because a nested condition provides a set of mappings and
a graph, where we can define nodes, edges and attributes. To be able to map Henshin
nodes is essential for creating an application condition. We need to make sure that
an application condition is applied to a corresponding matched modeling element for a
source model. This is achieved by mapping Henshin nodes that are part of the graph in
a nested condition to Henshin nodes that are part of the graph pattern that is used to
locate matches. If we refer back to figure 5.10 we can see that the pattern graph has a
Node1 that are typed by a T Node1. We then create a graph for a nested condition that
contains these two nodes and create a mapping from nodes in the application condition
to the nodes in the LHS or intersection graph. It is important to specify that application
conditions can not be defined for the replacement graph and is not needed either, since
the replacement graph is what we want to translate depending on how many times we can

Chapter 5. Problem Solution 69

locate a match for the graph pattern that the LHS provides in an instance graph. Now
we need to specify what an application condition should restrict when searching through
matches, and this is the name attribute of the type element. This application condition
can either be a positive or negative application condition. In this case we want the name
attribute to be a positive application conditions that returns true for every matching
type element located in an instance graph. We can specify several application conditions
for a rule, and it depends on the graph structure of the searching graph. We define a
new application condition for each nodes and arrows that are part of the LHS graph,
since these modeling elements can form a directed graph and each modeling element
is typed by a modeling element from the source meta-model. All of these application
conditions has to be true for a located match to be a valid match. Now we will expore
how we also implement negative application conditions for our model transformation
environment with traceable links.

5.5.1 Traceable links

As we discussed in chapter 3.2.7 a traceable link works as a footprint when executing a
set of transformation rules. Henshin provides a traceable link implementation through
the Henshin Trace model. This is a simple meta-model for defining traceable links and
can be imported for any Henshin module. The Henshin Trace model provides a Trace
modeling element and provides an unique traceable link between a source modeling
element and target modeling element. The source and target modeling elements can be
any classes that conforms to the Ecore meta-model. We create a traceable link for every
Henshin node we have included for the LHS graph. The nodes in the LHS graph are the
source modeling elements for a Trace modeling element while nodes in the RHS graph
are the target modeling elements. Now we have an unique link between a matched
node from the LHS graph and a produced node for the RHS graph for every time a
transformation rule is applied. These traceable links are represented in the replacement
graph the first time that a connection between two nodes are initialised. This means
that the traceable links are actually translated when a transformation rule is applied and
stored in the translated graph. Next time we want to refer to a traceable link between
modeling elements where a transformation rule has been applied we have to make sure
that the trace object is created both in the LHS and the RHS with a mapping between
them. Because together with a negative application condition this traceable link will
make sure that we only translate located matches in an source model once. This can
be achieved by defining a negative application condition that forbids Henshin to create
a traceable link. We create a nested condition similar to the previous section, but for
this case we want the application condition only to return true for all matches that
does not contain this graph pattern. This is very convenient when applying a set of
transformation rules, because we have already stated that a traceable link is created
when a transformation rule locates a match in an instance graph. This means that we
create unique traceable links between all nodes in the pattern graph that is matched in
an instance graph and the nodes that we create. It has to be noticed that the source
and target nodes of a traceable link has to be typed by the EClass modeling element
that Ecore provides. We can now execute the set of transformation as long as we want
and be safe that we will not execute matching pattern in an instance graph more than
once. The reason that we can make this statement is because when we find a match for
the first time then there exist no traceable link between modeling elements. But once
the transformation engine execute this rule, then a traceable link is created between the

Chapter 5. Problem Solution 70

matching nodes on the left side and the corresponding modeling elements on the right
side. And now the transformation engine are unable to locate this match for a second
time because we have restricted the transformation rule to not include matches that has
a traceable link to the source node that are part of the LHS graph. Now we will describe
more in detail how we apply these transformation rules.

5.6 Apply Model Transformation

5.6.1 Rule Application Control

Now that the DPF Transformation Editor has generated a set of Henshin transformation
rules the transformation engine is ready to apply these rules to a source model. The
Henshin module we generated in the previous section now contains a set of transforma-
tion rules that are specified in the Henshin Transformation Language, that we described
in figure 5.1 in the first section. The Henshin Transformation Engine can now execute
this generated module by explicitly invoking the Henshin interpreter. The interpreter re-
quires a module, a graph that contains the source model and a Henshin unit before it can
be applied. For our solution we have created a transformation unit that executes a set
of transformation rules in the same order that the DPF Transformation Editor provides,
and is called a Sequential unit. A transformation unit in Henshin is an implementation
of a rule application control system that we described in a more general term in section
3.2.3. A transformation unit in Henshin is an executable part that the transformation
engine can interpret and apply rules accordingly. It is important to specify that a trans-
formation rule itself in Henshin is a transformation unit, and can therefore be executed
by Henshin’s transformation engine. But a Henshin transformation rule does not pro-
vide any control mechanism for it self or other rules when executed. A transformation
rule will therefore only locate one single match if we invoke the Henshin interpreter on
a single rule. This is one reason for why we want to specify a transformation unit that
has some unique properties that a single transformation rule does not provide. Some
Henshin transformation units have the possibility to have other transformation units
as subunits. The Sequential unit that the module provides works as the master unit
for applying the transformation rules. For each transformation rule we created in the
previous section we define a Henshin Loop unit. This unit can only contain one single
subgraph, and that is the corresponding transformation rule. The Loop unit is executed
for as long as there are any matching modeling elements in an instance graph and will
locate matches an unlimited number of times unless we provide any mechanism to stop
the unit. This is where the negative application conditions that we described in the
previous section plays a vital role. Because the negative application condition specifies
that a transformation rule will only be applied unless there exist no traceable links. The
first time the transformation engine locates a match for a transformation rule it will
create a traceable links that connects the matching modeling elements and the created
modeling elements. Now the next time this specific match is located the application
condition will not be valid since now there exist a traceable link that has a reference to
a modeling element in the source model. We can now apply these repeatable units for
all transformation rules as long as the input graph does not contain a traceable link for
a matched modeling element.

Chapter 5. Problem Solution 71

5.6.2 The Transformed Model

For all matches found in a source model we do some changes depending on how the RHS
graph is specified. These changes are specified as new DPF modeling elements after
applying a set of transformation rules. The next step is to make sure that the produced
modeling elements are type correct. This means that the target model is required to
conform to a target modeling formalism. Figure 5.11 represents the result of a model to
model transformation.

Figure 5.11: The transformed result of a model to model transformation.

The transformation EGraph represents the source model as we mentioned in the previous
section. The Henshin interpreter will execute transformation rules on this transforma-
tion graph until there are no more valid matching pattern located in the source model.
The produced target modeling elements that are included in the transformation graph
after rule execution conforms to a joined modeling formalism. However, we want these
modeling elements to conform to a target modeling formalism and not the joined mod-
eling formalism. Section 5.5 describes how we can create a set of transformation rules
in Henshin from the transformation rules in the DPF Transformation Editor. These
transformation rules has a search graph structure with positive application conditions
that determine the abstract syntax that a source modeling formalism one abstraction
layer higher provides. Each Henshin node in a RHS graph of a rule that is specified has
a reference to a target type node or arrow. For each application of a transformation rule
we locate a match and create nodes and arrows with a corresponding type node and type
arrow accordingly to the RHS. After the execution of all the transformation rules we
can now extract these produced target modeling elements to a new target specification
that conforms to a target modeling formalism. For each translated modeling element
we can check if it has a corresponding type node or type arrow in the target modeling
formalism.

Chapter 6

Evaluation

6.1 Evaluation of Solution

We have successfully managed to integrate Henshin with the Diagram Predicate Frame-
work to support exogenous model transformations. This is done by including an editor
for the DPF workbench that communicates with the Henshin model transformation en-
vironment to provide a model to model transformation environment for DPF models.
We have extended the DPF Transformation Editor to communicate with the Henshin
model transformation environment. For the solution we have utilized the strengths of
the environment that it implicitly does not support. If we refer back to figure 4.1 in
section 5.1 we saw that a specification is an instance of a linguistic meta-model that Hen-
shin has no problem interpreting. The problem arises for the ontological meta-models
that describes the source model together with a linguistic meta-model. Suddenly there
are two models that both provides some form of abstract syntax that Henshin is re-
quired to consider when defining the content of the transformation rules. Section 5
describes how we can explicitly solve this by extending the transformation rules with
application conditions. Henshin utilizes EMF’s Ecore modeling system when structuring
both the left hand side and right hand side of a transformation rule. This means that
Henshin supports the 2-layered modeling hierarchy that EMF provides. If we did not
extend the transformation rules with application conditions accordingly to the source
DSLs abstraction layer hierarchy, then Henshin would basically interpret that every DPF
specification, regardless of abstraction layer is created accordingly to EMF’s 2-layered
approach to meta-modeling. Because Henshin would ignore the di↵erent modeling for-
malisms provided by several layers of abstraction and threat all modeling elements in a
specification as a node and an arrow. This would lead to a set of transformation rules
that refers to the abstract syntax of the highest abstraction layer that DPF provides.
This is essentially what we want for the source model, but we want to define nodes and
arrows according to the modeling formalism that is one abstraction layer higher and
not the highest possible abstraction layers that is a node with an arrow connected to
itself. We described in the previous section that we can introduce each node and arrow
with its concurrent type from one abstraction layer higher as an application condition
in Henshin. This way Henshin will only locate matches for nodes and arrows that gives
a valid application condition. Without the application conditions the transformation
engine could potentially locate matching patterns for every single node and arrow in a
source specification for a single transformation rule. These application conditions could

72

Chapter 6. Evaluation 73

potentially get quite complex if the DPF Transformation Editor is extended with the
possibility to specify negative and positive application condition.

The DPF Transformation Editor functions both as a support for the Henshin model
transformation environment and as a solution for including support for exogenous model
to model transformations in DPF. One could say that for this specific problem solution
that Henshin is independent of the DPF Transformation Editor. However, this is not
correct, because with the help of this tool we can make exogenous model transformations
in DPF generic. This means that we could be able to transform a model specified in
one DSML into a model specified in another DSML, regardless of abstraction layers. So
in the case of creating transformation rules in the Henshin transformation language the
DPF Transformation Editor could be considered to provide a support role. But when
considering a generic model transformation for DSMLs on an arbitrary abstraction lay-
ering the tool’s role is essential. Henshin can define generic model transformations when
the source and target meta-model is Ecore based models, but for our case every single
DPF specificaiton conforms to the same Ecore model. The DPF Transformation Edi-
tor provides the Henshin model transformation environment with a additional searching
information through defining application conditions based on DPF specifications from
higher abstraction layers.

The DPF Transformation Editor and Henshin provides a model to model transformation
environment that translates a specification provided at an arbitrary layer of abstraction
to another specification provided at an arbitrary layer of abstraction.

Figure 6.1: A simplified joined modeling formalism that transformation rules refers
to.

Figure 6.1 explains that we create a joined specification from a source modeling for-
malism and a target modeling formalism from some abstraction layers. The joined
specification is created independent of the two abstraction layers and is referred to when
creating transformation rules in the DPF Transformation Editor.

6.2 Test case with the DPF Transformation Editor

6.3 Comparison with other editor tools

In this section we provide a comparison between the three model transformation environ-
ments that we worked with including the DPF Transformation Editor. In our solution

Chapter 6. Evaluation 74

we expanded the Henshin model transformation environment to be able to apply model
transformations to a multi-layered meta-modeling environment like we discussed in sec-
tion 6.1. It is natural that the DPF Transformation Editor will have similarities to
the Henshin environment since our solutions builds heavily on this environment. But
we can still compare our solution with both Henshin and other transformation tools.
Table 6.1 provides an overview of the DPF Transformation Editor and the three other
model transformation environments that we compared in section 4.2. We will consider
only some of these elements since some of them will be explained in later subsections.

AGG Henshin ATL DPF Transform

Endogenous transformation
p p p

—

Exogenous transformation
p p p p

Input Elements 1. . . n 1. . . n 1. . . n 1. . . n

Output Elements 1. . . n 1. . . n 1. . . n 1. . . n

Graphical syntax
p p

—
p

Meta-modeling layers 2 2 2 1
Separate meta-models —

p p p

Integrated with EMF —
p p p

Supports Java
p p p p

Model transformation file size 200 kb 80 kb 4 kb 265 kb

In-place/out-place transformations in-place in-place out-place out-place

Table 6.1: Comparing model transformation tools.

All four tools supports for an arbitrary number of both input and output elements. This
means that if the tool takes a number of input models, then it produces the same number
of target models. Take an ATL module as an example. It accepts a fixed number of
models as input, and returns a fixed number of target models. This means that an ATL
module can not generate an unknown number of target models. If there is one input
model, then there will be one output model that conforms to a target meta-model.

Both AGG, DPF Transformation Editor and Henshin provides a graphical syntax to
specify the transformation rules that is potentially intuitive. This is not the case for
ATL, which uses a textual based approach. For ATL the users have to implement
transformation rules in programming code.

The tools can be integrated with Java. For ATL the files containing the transformation
rules have to be created before they can be used in a java application. In ATL this has
to be a “atl” file containing a ATL module that has a list of rules. This is because the
ATL transformation engine relies on a file extension with the name “atl”. Both Henshin
and AGG provides an API that can be used to create transformation rules, application
conditions, type graph, source graph, etc. The DPF Transformation Editor is quite
di↵erent since it utilize the convenience methods that the Henshin API provides. It is
possible to specify transformation rules in the DPF Transformation Editor by imple-
mentation code, but the method to generate Henshin rules requires a single production
that has a left, a right and a common subgraph. We explained what a production was
in section 5.

We can also se that the size of the transformation rules di↵er amongst the tools. The
examples that are compared are di↵erent exogenous model transformations. This means

Chapter 6. Evaluation 75

that a model transformation for all tools includes a source and target meta-model and
a file containing the transformation rules. By reading the table we can see that an
exogenous model transformation in the DPF Transformation Editor uses 265 kb of the
storage space. This number is so unbelievable small that it will never be noticed in any
modern computers. But there is one interesting thing however, that the transformation
rules defined in ATL is over 60 times smaller than the DPF Transformation Editor. What
this basically means is that creating model transformations through the use of textual
concrete syntax is less space consuming than through the use of graphical syntax. This
is only logical since the graphical syntax based transformation languages requires more
storage space simply because they use graphical elements to represent the transformation
rules.

6.3.1 Editing Transformation Rules

In the DPF Transformation Editor we present the transformation rules in a list of trans-
formation rules. Each transformation rule is extended with a simplified version of the
DPF Model Editor and a toolbar that contains modeling elements from a source and a
target meta-model. With these modeling elements we can create and structure a search-
ing pattern and a replacement pattern for each transformation rules. It is logical that the
searching pattern and replacement pattern create modeling elements that corresponds
to the source and target meta-model, since this is an exogenous model transformation
between two di↵erent modeling languages. In Henshin we can choose to create transfor-
mation rules in either the tree based Henshin Model Editor or in a graph based editor.
The DPF Transformation Editor that we created provides an integrated view on trans-
formation rules, similar to Henshin and GReAT. This means that we do not provide
separate editors to implicitly edit the LHS and the RHS graphs for a transformation
rule like for example AGG does. This is convenient since editing is now separated in a
left hand and a right hand side editor. AGG can also include a third editing window,
that specifies application conditions for the rule. At first glance AGG will most likely
provide a more intuitive approach to editing transformation rules compared to the in-
tegrated view that Henshin and our solution provides. The users needs to understand
the principles behind graph transformations when working with either tools, but AGG
might present a more intuitive approach since the tool has a clear procedure on how to
create and manage new application rules. However, AGG, Henshin and DPF Transfor-
mation Editor provides a graph based approach to model transformations even though
they introduce di↵erent approaches to define transformation rules. The graphical editor
that AGG and Henshin provides are di↵erent in such a way that the creation of rules
are di↵erent. Both Henshin and AGG has a tree based editor, but the editor works dif-
ferently amongst the two tools, see figure 4.6 and 4.8 for the two editors. The graphical
editor for our solution is very similar to Henshin, but does not provide any three based
editor. However, when generating to Henshin transformation rule it is possible to use
the tree based editor and browse through the Henshin rules and application conditions.
Keep in mind that changes done to the Henshin rules might jeopardize the execution of
the transformation rules for DPF specifications.

The third transformation tool we encountered in our comparison is the ATLAS Trans-
formation Language. And while this tool is definitely not as intuitive as the the graph
transformation tools, once you understand how to create transformation rules and how
to work with the included meta-models, it is a good framework for working with model

Chapter 6. Evaluation 76

transformations. However, if a user do not fully understand the Object Constraint Lan-
guage (OCL), ATL is rather a hard tool to work with. Because OCL has a very leveled
learning curve, since it is a declarative programming language. We are more confident
in working with imperative programming languages during our studies here in Bergen.
ATL provides an editor where the users can use OCL to create and modify transfor-
mation rules. ATL has a very strict way of writing transformation rules, since the tool
uses a textual based approach to create transformation rules. The user has to use the
predefined stereotypes defined by ATL.

6.3.2 Meta-modeling

Meta-models are initialised and handled di↵erently amongst the four tools. The initiali-
sation of the meta-models for Henshin and ATL is similar. Both of these tools use Ecore
to create meta-models, since they are both integrated with EMF. For Henshin and ATL
the user has to create one Ecore model for both the source and the target meta-model.
Both of these meta-models can be imported both into Henshin and ATL. One thing that
is convenient with Henshin that ATL does not provide, is that Henshin provides a list
of meta-models that is available for the user. These are meta-models that can be used
either as source or target meta-model. If we want to translate a instance model to an
Ecore model, we can in Henshin import this Ecore meta-model from a list and use it as
the target meta-model.

AGG on the other hand uses a disjoint meta-model. This means that in AGG there is
something called a type graph, and in this type graph both the target and the source
meta-model are defined. AGG handles consistency similar to Henshin. AGG will restrict
the user to only create nodes or arrows between nodes that are specified in the type
graph. Figure 4.5 in chapter 3 shows that there are created references between two
meta-models. And through the use of these references, AGG can create and modify
application rules to translate these two models represented in the type graph.

Through defining the abstract syntax is where our editor has its biggest advantage, since
the three transformation tools that we worked with utilizes a two layered approach to
modeling. First we create the abstract syntax through a meta-model and second we
specify the concrete syntax through a instance model of this abstract syntax. This is
also implicitly true for the DPF Transformation Editor, since every DPF specification,
regardless of abstraction layer is represented as an instance model of a DPF specification
one abstraction layer higher. There are some similarities to how we present meta-models
like ATL and Henshin does for the transformation rules and that is through the Ecore
model. There is one major di↵erence however, and that is that our Ecore model is
static and ATL and Henshin’s meta-models are dynamic. And by dynamic we mean
that the source meta-model and target meta-model represents the abstract syntax of
some arbitrary modeling language. For the DPF Transformation Editor the source and
target meta-model always corresponds to the same Ecore model and that is the common
meta-model for all specifications. But with the help of application conditions in Henshin
we can define an abstract syntax that the transformation rules can refer for an unlimited
hierarchy layer of meta-modeling. to can adapt the Henshin transformation language to
make it possible to apply model transformations to a modeling language that is specified
through an unlimited hierarchy layer of meta-modeling. So one could say that every DPF
specification is an instance of a common modeling language while the abstract syntax

Chapter 6. Evaluation 77

for the modeling elements for this DPF specification are described by another DPF
specification one abstraction layer higher.

6.3.3 Transformation Rules

We have seen that the creation of transformation rules varies over the three di↵erent
tools. ATL provides a textual based approach and therefore requires multiple lines of
code. The abstract syntax for the three di↵erent tools are not that di↵erent, since both
Henshin and ATL utilizes the Ecore model to create meta-models and AGG creates
one type graph that contains the abstract syntax for both the source and target model.
The abstract syntax can be visualized either by using the tree based model editor that
EMF provides or by using a tird party tool for a graphical representation of the models.
The concrete syntax are obviously di↵erent between the three tools. AGG and Henshin
provides a concrete graphical syntax, while ATL on the other side provides a concrete
textual syntax for creating and modifying transformation rules. For both AGG and Hen-
shin the rules can be created and modified by using a graphical editor. AGG separates
the RHS and the LHS in two separate editing parts while Henshin use predefined word
sequences to distinguish the two di↵erent sides. If the rules are quite large, with multiple
nodes and arrows the rules presented in Henshin becomes easier to read and maintain.
But both AGG and Henshin has a clear way of representing the rules and possible at-
tached application conditions. All three tools have a left hand side and a right hand side,
but are represented di↵erently amongst the rules. Henshin and AGG use graph patterns
to represent the LHS and the RHS while ATL utilizes logical expressions. In section 3
we discussed that ATL can have both declarative and imperative transformation rules.
In Henshin and AGG the LHS and the RHS are represented as graphs. Where the
LHS represents the pattern graph that is matched for an instance model and the RHS
represents the part that should be replaced for the instance model. For ATL the LHS
represents the source model while the RHS represents the target model.

Both AGG and Henshin can specify both negative and positive application conditions.
These are attached to pattern graph or the LHS of a rule. These application conditions
provides a true or false clause that can be used to restrict the pattern graph. For ATL
these conditions are handled by OCL expressions, where one example is the if-then
clause.

6.3.4 Rule Scheduling

ATL does the scheduling implicit, where the user has no control over the scheduling
algorithm defined by the tool. The user can however influence the scheduling algorithm
defined by the ATL transformation engine by designing the logic in the transformation
rules to apply in a certain order. The transformation engine will first execute the declar-
ative rules before applying the imperative section of a transformation rule. AGG and
Henshin does however, give the users the possibility to influence how the transformation
rules are applied. In Henshin and AGG this is handled explicitly before applying the
transformation rules, where the user can change the execution order of the rule. For
example the rules can be applied non-deterministic or in sequential order.To force the
transformation in a sequential order could result in performance issues compared to
applying the rules non-deterministically. AGG provides the users with the possibility

Chapter 6. Evaluation 78

to organize the transformation process into several phases or layers. These layers are
numbered from 0 . . . n, and the lower the number the higher the priority for the rule,
when it is translated. This gives the users the possibility to execute rules layer by layer.
In Henshin these rule scheduling mechanisms are referred to as transformation units.
For this tool it is possible to specify units that supports rule iteration, both by looping
through rules until there are no more changes detected or by iterating through rules for
a fixed number of iterations. In Henshin it is also possible to specify an amalgamation
unit, that is an unit that provides a forall-operation for the matching pattern graph.
This unit has a kernel rule and multiple underlying rules that are matched as often as
possible. It is clear that Henshin provides the users with quite an variety of controlling
the execution of rules.

The DPF Transformation Editor does not provide the user with any control regard-
ing how to locate matches and how transformation rules are applied. We generate a
Henshin module that contains a set of transformation rules. We can manipulate the
execution order of these transformation rules, but the algorithm that Henshin uses to
locate matching patterns in a source model is part of the internal infrastructure of Hen-
shin and cannot be manipulated. We can however force the transformation rules to be
executed in a given order. This version of the Editor has no support defining a sched-
ule mechanism that specifies how the rules are applied and will for now only run the
transformation rules sequentially. We can decide the priority of the rules by changing
the order that they appear in the DPF Transformation Editor, but this list will apply
rules in sequential order. Most of the transformation tools open to the public provides
solutions to manipulate the scheduling mechanism, for example ATL provides the users
the possibility to define rules as lazy rules and control how they are applied. While AGG
and the Henshin environment lets the users specify the scheduling mechanism over a few
predefined choices.

Another thing that is special about our integration of Henshin is that locating matches
are handled di↵erently. An application condition is initially meant to restrict a trans-
formation rule when locating matches. If application conditions are not specified for a
transformation rule in some 2 layered meta-modeling transformation tool we will still
locate a matching pattern that correspond to modeling elements that are described in
the abstract syntax. The application condition has a vital role in our integration of
Henshin, because the application conditions are checked against the DPF model that
are one abstraction level higher. Without this application condition we would simply
get a target DPF model that has a list of nodes and arrows that conform to the highest
level of abstraction in DPF. The highest level of abstraction in DPF is always a node
and an arrow, that conforms to itself. So while a 2 layered meta-modeling transfor-
mation tool would find matches in a source model that correspond to the meta-model,
the DPF Transformation Editor would find matches to the linguistic meta-model and
not the ontological meta-model at some level of abstraction. One could state that an
application condition for a 2 layered meta-modeling transformation tool is independent
of the transformation rules while our version the transformation rules are dependent on
the application conditions to be able to produce a correct target model.

6.3.5 Rule Organization

ATL organizes the transformation rules inside modules, and its therefore easy to reuse
these modules if applicable. This is convenient for users of ATL since this means that

Chapter 6. Evaluation 79

all created rules can be used to form new transformation rules. Henshin provides the
user with the possibility to nest or reuse rules in di↵erent scheduling mechanism or
transformation units as we discussed in the last paragraph. But Henshin and therefore
the DPF Transformation Editor does however not provide the user with the possibility
to reuse rules in the creation of new rules like in ATL.

6.3.6 Source - Target Relationship

The DPF Transformation Editor explicitly performs an out-place model transformation.
This means that we create a target model that is independent of the source model. For
all matching modeling elements we locate in the source model we create in a target
model. We then make sure to specify all the nodes and arrows with its corresponding
type from a specification that is located one abstraction layer higher. AGG does this
di↵erently, since the source and target model are the same model. Matches are located
in the source model, while the target model is updated in the same model. For an
exogenous model transformation it is required that ATL produce the target model in a
separate file. Henshin on the other hand provides in-place model transformations on the
source model. But when we invoke the Henshin interpreter engine programmatically we
can check for changes before and after exeuting a set of transformation rules. Henshin
transformation engine requires a set of transformation rules, and a graph that contains
the source model. This graph contains a list of all the modeling elements that are part of
the source model. This is why we can explicitly make a model transformation out-place,
by checking this list before and after the transformation and adding translated elements
to a target model. The interpreter will locate matches in the source model through this
graph and produce target elements to this graph.

For an exogenous transformation in ATL it is mandatory to create a new target that
holds all the target model elements. Exogenous model transformation in ATL is therefore
called an out-place transformations. In AGG on the other hand both source and target
model is always the same model. This means that AGG performs an in-place update on
its original source model. Henshin is a bit more special, because implicitly it performs
in-place update on the source model. But in Henshin you can initialize variables that
explicitly captures the transformed target elements and save these to a separate file in
your storage unit. Note however, that this can only be done when utilizing the Henshin
interpreter programmatically.

6.3.7 Directionality

To provide a graph based model transformation with the possibility to translate in both
directions is not a simple task. Because then the tool will have to provide arbitrary
switching between source and target models, and therefore the pattern and replacement
graphs will have to be changed when they are switched. This means that the LHS and
the RHS part of a transformation rules have to be switched out. This is not provided in
the DPF Transformation Editor. One could do this in two steps, to first locate matches
in a source model and produce a target model and then do another model transformation
where the source and target part is switched. Both Henshin and AGG does not provide
this since the corresponding RHS and LHS graphs are created according to the abstract
syntax of the source and target model.

Chapter 6. Evaluation 80

Its obvious that all four tools are unidirectional, since they can be executed in one direc-
tion only. That is to compute a target model from a source model. The tools requires
two model transformations to be able to transform in multiple directions. Where the
source and target model and meta-models switch places. But this is not how multidi-
rectional transformations work. A multidirectional transformation can execute in both
direction when performing a model transformation.

6.3.8 Tracing

Tracing in the four tools provides an unique link between a source and a target. The
source represents the matched part while the target represents the generated or re-
placement part. All three tools provides dedicated support for traceability. But these
traceable links are handled di↵erently amongst the tools. For ATL the trace model
works as a storage location and automatically creates trace links between source and
target elements. These traceable links are internally used by the ATL transformation
engine when executing a model transformation. But we explained in section 3 that these
trace links can be explicitly captured by creating transformation rules that generates a
collection of trace links in a separate trace file. Henshin does this di↵erently, because
tracing is controlled by the users. Henshin has a dedicated Trace Model that can be
imported to the Henshin module as an Ecore model. The trace model in Henshin are
automatically created when executing rules, but the user have to manually assign the
traceable links inside the transformation rules. The traces in Henshin are translated
when a rule is executed, and therefore the user has to be aware of this when using
these traces in other rules, since this could lead to the creation of multiple traceable
links between the same elements. The DPF Transformation Editor defines a traceable
link with source and target modeling elements di↵erently amongst nodes and arrows.
For DPF models nodes and arrows are defined by the EClass modeling element that
Ecore provides. Tracing in AGG plays a vital role to executing model transformations.
Traceable elements are created similar to any other elements when initializing the type
graph. With traceable links between the source and the target elements, AGG can be
certain that elements are transformed. The traceable link in AGG ensures that a match
in the pattern graph is only matched once. If we do not create a traceable link between
source and target elements in AGG, the rules will be applied an endless amount of times.
Tracing amongst the three di↵erent tools are di↵erent in such a way that it is required
for exogenous model transformations for AGG and ATL. In ATL the traceable links are
created automatically and cannot be controlled by the users, while in AGG the traceable
links are created as bridges between source and target elements. For Henshin the Trace
model is optional.

6.3.9 Translating the instance model

When ATL transformation language executes the application rules for the model to
model transformation, a new model instance is created for the target model. This means
that the source model is independent of the target model. Where Henshin and AGG
performs in-place model to model transformations. This means that they both operate
on an instance model of the source meta-model, and translates inside this instance model.
On the other side, for ATL this is not needed, since both the source and target model
are kept as separated files. This is also possible to achieve with Henshin. If the user

Chapter 6. Evaluation 81

programmatically invoke the Henshin Interpreter the target model can be forced to be
saved in a newly created file. Henshin will still do an in-place model transformation,
but it is possible to save the translated object in a separate file. It is then possible to
perform an in-place transformation in Henshin while saving the target instance model
in a separate file. The DPF Transformation Editor utilize the strengths of Henshin
to perform an in-place model transformation of a source model and explicitly creates
a target model based on the results of this source model. All four approaches can
however give the same result. Inn AGG and Henshin the users just need to make sure to
delete unwanted elements from the translated host graph. This is di↵erent in the DPF
Transformation Editor since we produce a target graph structure for each matching
graph structure and specifies the target graph structures in a separate target model.

Chapter 7

Conclusion

There are several model transformation environments available that provides model to
model transformations. These environments are designed accordingly to di↵erent ap-
proaches to model transformations. In this thesis we have explored three di↵erent model
transformation environments that could expand the DPF Workbench with model to
model transformation. We integrated a version of the DPF Transformation Editor that
integrates the Henshin transformation language and engine to provide an exogenous
model transformation environment for DPF. Henshin proved to be a viable transfor-
mation language that facilitates a model to model transformation environment for the
DPF Workbench. In this thesis we have explained that Henshin can be extended with
application conditions to perform model transformations on models described through
arbitrary layers of abstractions.

• Application conditions to specify the abstract syntax from a DPF specification one
abstraction layer higher.

• Requires a traceable link between each source and target modeling elements. This
traceable link is utilized in three di↵erent aspects when integrating Henshin with
the DPF Transformation Editor.

1. Specifies that the engine only translates a matching pattern once.

2. Defines a correspondence between source and target modeling elements.

3. Reusable in other rules if the source and target element are used to define
the LHS and RHS graph.

For an exogenous model transformation Henshin requires a traceable link between source
and target modeling elements not only to specify the correspondence between two mod-
eling objects, but also to reuse the source and target node of this traceable links in
other rules. These modeling objects represents either a node or an arrow in a DPF
specification. For a transformation rule when a traceable link is first established it is
actually transformed like any other graph structure initialized by the RHS graph. Now
we can use this traceable link if for example produced modeling elements are part of the
LHS and RHS graph in other transformation rules. Note that to use a traceable link in
other rules arises a potential dependency issue. The reason for this is because in this
solution we designed the application control mechanism to apply transformation rules

82

Chapter 7. Conclusion 83

in a sequential order. If the application control utilizes a non-deterministic mechanism
to apply rules then the target model would in worst case not produce any result. Since
one rule requires a traceable link that should be initialized in another rule. However,
to apply a set of transformation rules non-deterministically is convenient if the source
model contains a dense graph, which should not be an issue since DPF specifications
are human made.

The integration of Henshin with DPF allows for the possibility to translate a DPF spec-
ification to a DPF specification that conforms to another modeling formalism. The
solution still requires more testing on di↵erent exogenous model transformation scenar-
ios, but editor should be able to create a set of transformation rules in Henshin based
on a source and target modeling formalism.

7.1 Future Work

There are still some work that is required to do before the DPF Transformation Editor
becomes a mature system that can provides model to model transformations.

7.1.1 Endogenous Model Transformations

In this thesis we present an integration of Henshin that supports exogenous model
transformations over di↵erent layers of abstraction, but the DPF Transformtaion Editor
should be extended with endogenous model transformations. This can also be achieved
by using Henshin, but an endogenous model transformation solution is done di↵erently
in Henshin compared to an exogenous model transformation. For Henshin we can utilize
the double pushout approach to first locate a match, then delete modeling elements that
are uniquely part of the LHS. The next pushout consist of inserting modeling elements
that are uniquely part of the RHS. While these two operations are performed, modeling
elements that is part of both the LHS and the RHS are preserved. This meant that
we do not need traceable links to provide endogenous model transformation on DPF
specifications in Henshin.

7.1.2 Making the Model Transformations constraint aware

The DPF Transformation Editor does at this moment not provide model to model
transformation that is constraint aware for the source and target modeling formalism.
Basically this means that we do not consider the constraints that is defined in the
abstract syntax of the source and target meta-model. Figure 7.1 explains how we can
do this.

Chapter 7. Conclusion 84

Figure 7.1: A simplified joined modeling formalism with constraints that transforma-
tion rules refers to.

We could extend the joined modeling formalism with constraints. This means that we
have to create the constraints for both the source modeling formalism and the target
modeling formalism in the joined modeling formalism. This means that we can make
transformation rules in the DPF Transformation Editor that also includes the possibility
to define the RHS with constraints based on constraints from the LHS. This is particu-
larly convenient if we want to transform one modeling formalism into another modeling
formalism.

7.1.3 Verification of target modeling formalism predicates

When the target model are finished with the transformation the corresponding predi-
cates from the target modeling formalism requires verification. This can be achieved
by searching through every single node and arrow in the target specification and make
sure that the predicates are fulfilled with the target modeling formalism one abstraction
layer higher.

Bibliography

[1] “OMG Unified Modeling LanguageTM (OMG UML), Infrastructure.” http://www.
omg.org/spec/UML/2.4.1/.

[2] Rational, “Rational Unified Process: Best Practices for Software Development
Teams,” 1998.

[3] IBM Rational Software. http://www-01.ibm.com/software/rational/rup/.

[4] The International Business Machines Corporation. http://www.ibm.com/ibm/us/
en/.

[5] K. Schwaber and M. Beedle, Agile software development with Scrum, vol. 1. Prentice
Hall Upper Saddle River, 2002.

[6] K. Beck and C. Andres, Extreme programming explained: embrace change. Addison-
Wesley Professional, 2004.

[7] R. France and B. Rumpe, “Model-driven development of complex software: A re-
search roadmap,” in 2007 Future of Software Engineering, pp. 37–54, IEEE Com-
puter Society, 2007.

[8] R. Brown, I. Morris, J. Shrimpton, and C. D. Wensley, “Graphs of morphisms of
graphs,” the electronic journal of combinatorics, vol. 15, no. A1, p. 1, 2008.

[9] Unified Modeling Language. http://www.uml.org/.

[10] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering in
Practice. Morgan and Claypool, 2012.

[11] S. Cook and S. Kent, “The domain-specific ide,” UPGRADE, IX, no. June, 2008.

[12] A. Rutle, Diagram Predicate Framework A Formal Approach to MDE. PhD disser-
tation, Department of Informatics, University of Bergen, Norway, 2010.

[13] “OMG Meta Object Facility (MOF) Core Specification Version 2.4.1.” http://

www.omg.org/spec/MOF/2.4.1/.

[14] “OMG. UML 2.0 OCL Specification, OMG Adopted Specification. Version 2.0.”
http://www.omg.org/spec/OCL/2.0/.

[15] J. Warmer and A. Kleppe, The Object Constraint Language: Getting Your Models
Ready for MDA. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2 ed., 2003.

[16] M. Blaha and J. Rumbaugh, Object-oriented modeling and design with UML, Second
Edition. Pearson Prentice Hall, 2005.

85

Bibliography 86

[17] M. Fowler, Domain-specific languages. Pearson Education, 2010.

[18] Y. Lamo, X. Wang, F. Mantz, O. Bech, a. Sandven, and a. Rutle, “DPFWorkbench:
a multi-level language workbench for MDE,” Proceedings of the Estonian Academy
of Sciences, vol. 62, no. 1, p. 3, 2013.

[19] A. Rossini, Diagram Predicate Framework meets Model Versioning and Deep Meta-
modelling. PhD dissertation, Department of Informatics, University of Bergen,
Norway, 2011.

[20] Z. Diskin and B. Kadish, “Variable set semantics for keyed generalized sketches:
Formal semantics for object identity and abstract syntax for conceptual modeling,”
Data & Knowledge Engineering, vol. 47, no. 1, pp. 1–59, 2003.

[21] D. Duval, “Diagrammatic specifications,” Mathematical Structures in Computer
Science, vol. 13, pp. 857–890, 12 2003.

[22] Ø. Bech, “DPF Editor, A Multi-Layer Modelling Environment for Diagram Predi-
cate Framework in Eclipse,” 2011.

[23] T. Mens and P. Van Gorp, “A taxonomy of model transformation,” Electronic Notes
in Theoretical Computer Science, vol. 152, pp. 125–142, 2006.

[24] T. Arendt, E. Biermann, and S. Jurack, Henshin: advanced concepts and tools for
in-place EMF model transformations. Springer Berlin Heidelberg, 2010.

[25] J. De Lara and E. Guerra, “Deep meta-modelling with METADEPTH,” in Objects,
Models, Components, Patterns, pp. 1–20, Springer, 2010.

[26] T. Levendovszky, L. Lengyel, G. Mezei, and H. Charaf, “A systematic approach to
metamodeling environments and model transformation systems in VMTS,” Elec-
tronic Notes in Theoretical Computer Science, vol. 127, no. 1, pp. 65–75, 2005.

[27] K. Letkeman, “Comparing and merging UML models in IBM Rational Software
Architect,” IBM Rational, July, 2005.

[28] Object Management Group. http://en.wikipedia.org/wiki/QVT.

[29] Wikipedia, “Model transformation — wikipedia, the free encyclopedia,” 2013. [On-
line; accessed 25-October-2013].

[30] The Eclipse Modeling Project. http://www.eclipse.org/modeling/.

[31] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model transformation
tool,” Science of Computer Programming, vol. 72, no. 1, pp. 31–39, 2008.

[32] The MMT project. http://www.eclipse.org/mmt/.

[33] R. Dvorak, “Model transformation with operational qvt,” Borland Software Cor-
poration, 2008.

[34] G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varró, “Viatra-
visual automated transformations for formal verification and validation of uml mod-
els,” in Automated Software Engineering, 2002. Proceedings. ASE 2002. 17th IEEE
International Conference on, pp. 267–270, IEEE, 2002.

Bibliography 87

[35] D. Balasubramanian, A. Narayanan, C. van Buskirk, and G. Karsai, “The graph
rewriting and transformation language: Great,” Electronic Communications of the
EASST, vol. 1, 2007.

[36] G. Taentzer, “AGG: A Graph Transformation Environment for Modeling and Vali-
dation of Software,” in Applications of Graph Transformations with Industrial Rel-
evance, pp. 446–453, Springer, 2004.

[37] J. De Lara and H. Vangheluwe, “AToM3: A Tool for Multi-formalism and Meta-
modelling,” in Fundamental approaches to software engineering, pp. 174–188,
Springer, 2002.

[38] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation ap-
proaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645, 2006.

[39] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-
oriented domain analysis (foda) feasibility study,” tech. rep., DTIC Document,
1990.

[40] R. Prieto-Dı́az, “Domain analysis: an introduction,” ACM SIGSOFT Software En-
gineering Notes, vol. 15, no. 2, pp. 47–54, 1990.

[41] S. Dasgupta, C. Papadimitriou, and U. Vazirani, Algorithms. Tata McGraw - Hill
Education, 2006.

[42] A. Yie and D. Wagelaar, “Advanced traceability for atl,” in 1st International Work-
shop on Model Transformation with ATL, pp. 78–87, 2009.

[43] H. Herrlich and G. Strecker, Category theory. Allyn and Bacon Boston, 1973.

[44] M. Barr and C. Wells, Category theory for computing science. No. 22, Prentice Hall
New York, 1990.

[45] S. Awodey, Category Theory. Oxford University Press, 2006.

[46] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe, “Algebraic
approaches to graph transformation-part i: Basic concepts and double pushout
approach.,” in Handbook of Graph Grammars, pp. 163–246, 1997.

[47] H. Ehrig, R. Heckel, M. Kor↵, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini,
“Algebraic approaches to graph transformation-part ii: Single pushout approach
and comparison with double pushout approach.,” in Handbook of Graph Grammars,
pp. 247–312, Citeseer, 1997.

[48] H. Ehrig, M. Pfender, and H. J. Schneider, “Graph-grammars: an algebraic ap-
proach,” in 14th Annual Symposium on Switching Automata Theory, (New York,
NY, USA), pp. 167–180, IEEE; Univ. Iowa, IEEE, 1973.

[49] A. Corradini, T. Heindel, F. Hermann, and B. König, “Sesqui-pushout rewriting,”
in Graph Transformations, pp. 30–45, Springer, 2006.

[50] M. Bauderon, “A uniform approach to graph rewriting: The pullback approach,”
in Graph-Theoretic Concepts in Computer Science, pp. 101–115, Springer, 1995.

[51] A. Habel, R. Heckel, and G. Taentzer, “Graph grammars with negative application
conditions,” Fundamenta Informaticae, vol. 26, no. 3, pp. 287–313, 1996.

Bibliography 88

[52] A. Sandven, “Metamodel based Code Generation in DPF Editor,” 2012.

[53] Xpand. Project Web Site. . http://wiki.eclipse.org/Xpand.

[54] R. Gitzel, I. Ott, and M. Schader, “Ontological extension to the MOF metamodel
as a basis for code generation,” The Computer Journal, vol. 50, no. 1, pp. 93–115,
2007.

[55] A. group Lina and Inria, “ATL: Atlas Transformation Language, ATL User Manual
version 0.7,” 2006.

[56] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured petri nets and cpn tools for
modelling and validation of concurrent systems,” International Journal on Software
Tools for Technology Transfer, vol. 9, no. 3-4, pp. 213–254, 2007.

[57] The Henshin project. http://www.eclipse.org/henshin/.

[58] J. Schmidt, Entwicklung eines visuellen Editors zur Steuerung von EMF Modell-
transformationen. 2010.

[59] A. Warning, Entwicklung eines visuellen Editors fr Anwendungsbedingungen und
amalgamierte Regeln zur Flexibilisierung von EMFModelltransformationen. 2010.

[60] Eclipse. http://www.eclipse.org/.

[61] The World Wide Web Consortium (W3C). http://www.w3.org/standards/xml/.

[62] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, Dec. 2009.

[63] ATL Transformation Language. http://www.eclipse.org/atl/.

[64] OBEO Model Driven Company. http://www.obeo.fr/pages/atl-pro/en.

[65] The AtlanMod (”Atlantic Modeling”) team. http://www.emn.fr/z-info/

atlanmod/index.php/Main_Page.

[66] Generative Modeling Technologies. http://wiki.eclipse.org/index.php/GMT.

[67] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin: Ad-
vanced concepts and tools for in-place emf model transformations,” in Model Driven
Engineering Languages and Systems (D. Petriu, N. Rouquette, and y. Haugen, eds.),
vol. 6394 of Lecture Notes in Computer Science, pp. 121–135, Springer Berlin Hei-
delberg, 2010.

