
Formalisation of Simple MethOd
Declaration Language (SMODL) by DPF

Kalakata Suneetha

Master’s Thesis in Informatics – Program Development

Department of Informatics
University of Bergen

Department of Computer Engineering
Bergen University College

October 2012

Contents

List of Figures iii

Preface v

1 Introduction 1

1.1 Motivation . 1

1.2 Structure of Thesis . 4

2 Background 5

2.1 Model Driven Engineering . 5

2.2 Metamodelling . 9

2.3 Model Transformation . 12

2.4 Service Oriented Architecture (SOA) 13

2.5 Service oriented modelling (SOM) 16

2.6 SMODL development suite for Web services 19

2.7 Diagram Predicate Framework 22

2.8 DPF Workbench . 25

2.9 Metamodel based Code Generation 28

3 Problem and requirement analysis 31

3.1 Problem Anlysis . 31

3.2 Development Process . 32

3.3 Xpand Framework . 34

3.4 eXtensible Markup Language (XML) 40

4 Solution 42

4.1 Defining models and modelling languages for SMODL web Ser-
vices in the DPF Workbench . 42

i

4.2 Demonstration of SMODL modelling in DPF workbench 49

4.3 Bidirectional model transformation 51

4.4 Demonstration of the bidirectional model transformation 53

5 Evaluation and Conclusion 65

5.1 Evaluation . 65

5.2 Conclusion . 67

5.3 Further actions need to be taken 69

Bibliography 71

ii

List of Figures

1.1 Overview of Thesis . 3

2.1 Example for Category Theory . 7

2.2 Overview of Graph Transformation 8

2.3 Example of Metamodelling . 10

2.4 Generic pattern of metamodelling hierarchy 10

2.5 OMG’s 4-layer architecture of metamodelling 11

2.6 Model Transformation . 12

2.7 Service layers and stages of SOA expansion 15

2.8 MDSD approach for SMODL . 22

2.9 DPF Metamodel . 26

2.10An example of SMODLmetametamodel specified by DPF meta-
model . 26

2.11An example of SMODLmetamodel specified by SMODLmetameta-
model . 27

2.12Signature wizard in DPF Workbench 27

2.13Signature editor in DPF Workbench 28

2.14Code generator wizard . 29

2.15Creating code generator . 30

2.16Codegenerated Project . 30

3.1 DPF SMODL metmodel type system 35

3.2 Workflow control . 40

4.1 Homomorphic and Interpretive mapping of models 43

4.2 Relation between SMODLmetametamodel and DPF metamodel . 44

4.3 Prototyping mapping . 45

iii

iv

4.4 Isotypical and Prototypical mapping 46

4.5 Relation between SMODLmetametamodel and SMODL meta-
model . 47

4.6 Relation between SMODLmetamodel and SMODL model 48

4.7 DPF SMODL modelling . 48

4.8 SMODLmetametamodel . 49

4.9 SMODLmetamodel . 50

4.10SMODLmodel . 51

4.11Model transformation from textual SMODL to DPF SMODL . . . 63

4.12Generated DPF SMODL from SMODL XML-dialect 64

5.1 SMODL modelling hierarchy . 66

Preface

Foreword

This master’s thesis submitted for conclusion of my Master’s Degree pro-
gramme in Informatics – Program Development, at the University of Bergen
and Bergen University College.

The development of this thesis was done as a sub project of the DPF
project, I was introduced by skilled and interesting people and exposed to
many new technologies. The DPF project gave the chance to learn many
new things. At the starting of this thesis it was completely confusing about
the model-driven engineering, but once involved, it was so interested and
motivated to do thesis in challenging way. During bi-weekly meeting we had
a chance to discuss about progress of the work done, the technologies and
problems related to thesis and DPF project.

This project gave me the chance to formalise a web service with mod-
elling and model transformation concepts of model-driven engineering in
DPF project.

Acknowledgements

This thesis has been carried by me with invaluable support from my super-
visor Yngve Lamo with great patience and valuable suggestions. A special
thanks to Florian Mantz and Xiaoliang Wang for providing feedback on theo-
retical and technological aspects. I also would like to thank the DPF project
team members: Anders Sandven and Sidra Nadeem. It would not be possi-
ble to finish master’s thesis without support of my husband Chandra Sekhar
and my daughter Gnapika. Thank you.

Bergen, 08 October 2012

v

Chapter 1

Introduction

1.1 Motivation

As decades are passing, there is an outcome of new generation of program-
ming languages in software development. First generations of program-
ming languages were machine level programming languages. Second gen-
eration of programming languages are assembly languages were introduced
nn early 1950’s . They need to translate to machine code in order to run the
program. In between 1950’s to 1970’s third generation of programming
languages were introduced. They are higher level programming languages.
They are machine independent and programmer friendly languages such as
structured programming. The examples of third generation programming
languages are FORTRAN, COBOL, Java, Ada, C, C++ and Algol.

The problem criteria’s are changing from simple to complex, small to
large and I/O-intensive to computation-intensive, especially for the com-
mercial business software development. It became difficult to maintain the
high quality of the software with general purpose programming languages
those required to produce huge amount of lines of code. The questions were
raised how we can produce complex structures from simple parts and how
to reuse or integrate with other parts of the system [20].

In order to reduce the time, cost and effort in developing large complex
systems for a particular domain, developers are in need of new generation of
languages. Fourth generation programming languages such as SAS (Statis-
tical Analysis System), SQL (Structured Query Language) were introduced
in between 1970’s to 1990’s. They are based on structured query languages
and designed to reduce the time and effort on developing software systems.
But they are lack of concepts for solving problems related to a particular
domain. Modelling languages has become more popular to overcome those
issues. The developer could then get the same functionality by representing
in graphical notation instead of several as earlier [21]. Modelling languages
supports graphical and textual representation of the system.

1

CHAPTER 1. INTRODUCTION 2

The software development methodology was moved from code-centric to
model-centric. Creating a model for a particular domain either in graphi-
cal or textual representation increases the productivity and quality of the
software. Model driven approach focuses on higher level of abstraction of
a particular domain problem by specifying important aspects of the system
in models as first class entities and automation activities such as code gen-
eration and model transformation. This way of approaching for software
development is referred to as Model Driven Engineering.

Model driven engineering was originated from the Computer-Aided Soft-
ware Engineering (CASE) tools in early 1980’s. CASE tools uses graphical
representation in modelling to enable developers to express their design in
structured diagrams or data flow diagrams. The main purpose of CASE tools
are to produce high quality and maintainable software component by au-
tomating the activities in the life cycle of the software development process.
The CASE tools often has issues like quality, security, to handle complexity
in broad range of application domains and fault tolerance. To overcome the
issues with CASE tools, especially to address the platform complexity and
inability in expressing complex domain concepts effectively, MDE requires
new software technologies [34].

Object Management Group (OMG) proposed a set of standard rules for a
software design called Model Driven Architecture (MDA) [24] to overcome
the problems with CASE tools. MDA provides a framework for software de-
velopment that uses the models to describe the system to be built. Those
models are defined in Unified modeling language (UML), which was pro-
posed by OMG. UML uses graphical representation for syntax and the con-
straints are expressed in Object constraint language (OCL) [26]. MDA sup-
ports 4-layer of architecture for metamodelling [24]. MDA does not support
the multileveled metamodelling.

In order to overcome issues with MDA, Diagram Predicate Framework
(DPF) provides a formal specification approach for modelling based on cat-
egory theory and graph transformation [6]. DPF is supported by the DPF
Workbench tool [23]. It is a diagrammatic tool for a domain specific mod-
elling, which supports the development of metamodelling hierarchies with
an arbitrary number of metalevels and also checks the conformance of mod-
els to their metamodels by validating both typing and diagrammatic con-
straints [23].

Service Oriented Architecture (SOA) is an architecture not a framework
with a set of disciplines for designing and developing software, in the form
of services referred to as service-oriented entities. Services are self con-
tained functions build as a reusable software components. SOA approach
promises the reusability, loose coupling and interoperability of services. The
main goals of SOA are integration of different business/IT systems under
different managements. Service-Oriented modelling provides solution to a
particular business service by modelling them with particular modelling dis-
ciplines and language concerned to that service [3]. Modelling of services
in DPF Workbench [22] provides loose coupling and specification formal-

CHAPTER 1. INTRODUCTION 3

isation to a well defined business services especially such as web-based
applications.

The first goal of the thesis is to specify the metamodel for the Simple
Method Declaration Language (SMODL) [30] in DPF Workbench. SMODL
metamodel was specified in Relax-NG schema language by RUnit Software.
Formalisation of SMODL by modelling and making it as reusable component
for the DPF Workbench. Models specified by the metamodel of SMODL will
be used to generate code for implementation of SMODL web service with
other technologies developed by RUnit Software. DPF Workbench provides
the support to specify the metamodel in a higher level of abstraction. So,
this thesis defines the metamodel of SMODL by specifying the important
concept of SMODL services by means of Node and Arrow of DFP metamod-
elling language. Modelling of SMODL in DPF Workbench requires to define
constraints specific to SMODL model.

Second goal of the thesis is to perform the model transformation, the
DPF representation of SMODL models can be used by other plug-ins to gen-
erate the SMODL web services. It supports the bidirectional model transfor-
mation, i.e. the DPF SMODL model which is specified by the DPF SMODL
metamodel with the DPF SMODL modelling language will be transferred
to a textual model of XML SMODL specified by the modelling languages of
Relax-NG[30]. It also provides the implementation for reverse transforma-
tion from textual SMODL model to diagrammatic DPF SMODL model. DPF
Workbench tool provides the support with Code Generation facility based
on metamodel [32] for transformation from DPF SMODL model to textual
SMODL model as a transformation engine. The reverse transformation of
textual SMODL to diagram DPF SMODL model with support of XML parser
[40] to parse XML SMODL and with some graphical representation for visu-
alization. Figure 1.1 shows an overview of this process.

DPF SMODL

MetaModel

SMODL

MetaModel

 DPF

SMODL Model

SMODL

Model

Conforms to Conforms to

 Bidirectional

Model Tranformation

Formal correspondence

Tranformation

Figure 1.1: Overview of Thesis

CHAPTER 1. INTRODUCTION 4

1.2 Structure of Thesis

The structure of the thesis:

Chapter 2 – Background
This chapter gives the background information about the software de-
velopment methodologies and technologies such as Model-driven En-
gineering, Service-oriented Architecture, Service-Oriented Modeling,
SMODL specification to define SMODL model for SMODL web ser-
vices, Diagram Predicate Framework, DPF Workbench tool and Meta-
model based Code Generation in DPF Editor.

Chapter 3–Problem and requirement analysis
In this chapter we are explaining what research method we followed.
What kind of development methodologies we followed and technolo-
gies we chosen for implementation of the solution.

Chapter 4 – Solution
This chapter provides the solution how to define SMODL metamodel
and SMODL model in DPF Workbench. Implementation of bidirec-
tional model transformation from diagram model to text model and
reversing from textual model to diagram model.

Chapter 5 – Evaluation and Conclusion
This chapter gives a comparison between how the SMODL model is
formalised in the DPF Workbench and traditional way of modelling
SMODL models. Here we also summarizes how the problem is solved
in DPF and give some suggestion for further work.

Chapter 2

Background

This chapter gives introduction about the Model-driven engineering (MDE)
methodology, Service-oriented Architecture (SOA), Service-oriented Mod-
elling (SOM). Simple Method Declaration Language (SMODL) model spec-
ification for generating code for SMODL web service. Diagram Predicate
Framework (DPF), DPF Workbench tool to reference DPF, Code generation
based on metamodel.

2.1 Model Driven Engineering

As mentioned earlier, the evolution of programming languages for solving
the problems in enterprise systems, it became difficult to maintain the ef-
ficient documentation and specification of the system as the problem com-
plexity increases. Modelling languages and usage of models are become
popular to sort out these issues. Models are used for designing the sys-
tem, analysing the system, specifying required functionality and creating
documentation [21].

The Software development paradigm moved from code-driven develop-
ment to model-driven development. Model-Driven Engineering (MDE) is a
software development methodology which relies on models. In model-driven
approach models should be specific to a particular domain and give an ab-
stract representation of problem, which encapsulate the implementation de-
tails by concentrating more on domain concepts. MDE was driven using the
models as their primary artefacts during the life cycle of the development
process and improves the productivity by performing model transformation
with automatic generators [31]. MDE promises productivity, quality, facili-
tate separation between business logic and application technologies by ef-
fective expressing of domain concepts [24][34]. MDE can be characterized
by two relations; representation and conformance [13].

• Representation: A model represents a software artefact or real-world

5

CHAPTER 2. BACKGROUND 6

domain.

• Conformance: A model satisfies the constraints of a metamodel.

A model can be prescriptive (a specification of the real system to be
constructed, i.e. as a pattern for design) or descriptive (documented repre-
sentation to explain the major aspects of the existing system). Models can
represent the structure of the software system to be developed during the
design phase. A model should have the following characteristics [13].

• Abstraction: A model should only describe the interesting properties
of a system.

• Reflection: A model should represent some of the features of the sys-
tem to be constructed or already exists.

• Understandability: A model should represents intuition of the system.

• Substitution: A model can used instead of the original system.

Modelling languages are needed for defining the syntax and semantics of
the models. Syntax specifies the conceptual structure of the system, with a
set of rules needed for specifying the model. Semantics specifies the mean-
ing of every modelling concept has some meaning [21]. In general, any
modelling language is represented by a metamodel to express any model
that is an instance of that modelling language [14]. Formal specifications
is a method for defining the semantics of any languages in terms of mathe-
matics. There are several formal specification approaches for defining mod-
elling languages such as Algebraic, Logic, Type theory, Category theory and
Graph transformation.

Logic: It’s a subfield of mathematics. It shows expressiveness power of
a formal system. So, mathematical concepts are expressed in formal
logical system such as propositional logic and first-order logic. Propo-
sitional logic provides the standard way for assigning meaning to its
expression with limited expressive power [37]. First-order logic con-
sist of well-formed formulas and formula-binding operations of quan-
tification over individual elements [37].

Algebraic Specification: It’s a collection of formal methods which uses
the ideas from logic and mathematics to model, analyse, design, con-
struct, and improve software [33]. It allows specifying the required
behaviour of the system and making sure that correctness of the indi-
vidual steps with proof. This ensures the correctness of the proposed
system. Logical system or first-order logic called axioms are required
for capturing the required behaviour of the system. Semantics of the
logic system ensures whether the axiom is satisfied or not.

Type theory: Type theory provides the formalism in terms of formal sys-
tem. Formal system is a well defined system of abstract thought based
on model of mathematics [38]. Formal language is used to define the

CHAPTER 2. BACKGROUND 7

formal system which uses primitive symbols for constructing certain
rules called Axioms. Axiom is a statement that can serves as a starting
point, from that a new statement can be derived. Type theory is based
on a simple typed lambda calculus, which is a formal system in terms
of variable binding and substitution for computation. Lambda calculus
provides the isomorphism between proposition and type, proposition
refers to the meaning of full declarative sentence and type refers each
value should be associated with a type system to be computed.

Category theory: Category theory is based on high level of abstraction
that takes the following view point [39]

• There are objects of interest and directed relations (arrows) be-
tween these objects.

• There is no possibility to look inside the objects i.e., objects are
considered as black boxes. The only interesting study about the
objects is the relations going into this object and going out, re-
spectively.

For example referred from [33]: Given a pair of sets A and B , a product
of A and B is a set P together with two functions π1:P → A and π2:P →
B such that for any set C with functions f : C → A and g : C → B there
exists a unique function h : C → P such that h;π1 ≡ f and h;π2 ≡ g.
The figure 2.1 shows the example of Category theory. According to
this all interesting information about A and B is captured by P.

C

P B A

 f g

 Ǝ!h

 Π1 Π2

Figure 2.1: Example for Category Theory

Graph transformation: Graphs plays a key role in Graph transformations.
Graphs are useful to explain complex situations at a intuitive level
[12]. A graph is given by a collection of nodes N , a collection of edges
E, a map S : E → N , assigning each edge to its source node and a
map T : E → N assigning each edge to its target node. The purpose
of Graph transformation is the rule base modification of Graphs, as
shown in figure 2.2. The core rule P = (L,R) is a pair of left hand side
graph L and right hand side graph R. Once the rule P is applied then
L in the source graph is replaced by the R to get target graph.

CHAPTER 2. BACKGROUND 8

L R

P=(L,R)

Figure 2.2: Overview of Graph Transformation

2.1.1 Model Driven Architecture

In 2001 OMG[24] proposed a software design namely, Model Driven Archi-
tecture (MDA) with a set of standards for structuring the specification of
the system in terms of models. MDA was the first initiator to the MDE ap-
proach of development methodology. MDA defines the three viewpoints for
analysing the system. They are

• Computational-Independent Model (CIM): It is completely defined by
the domain expert of the system, does not contain the details of the
structure.

• Platform-Independent Model (PIM): Model should be independent of
the computer specific platforms.

• Platform-Specific Model (PSM): It’s a combination of PIM and the spec-
ification of the computer system.

The few standards of MDA for supporting the metamodelling are

Meta-Object Facility (MOF)

Meta-Object Facility (MOF)[25] was proposed by OMG in the 90’s. It is
self-defined (reflexive) language and framework for specifying, construct-
ing and managing technological independent metamodels [13]. In the MOF
2.0 version there are two meta-metamodels. One was defined in the scope
of Model driven architecture Complete MOF (CMOF), the other one Essen-
tial MOF (EMOF) was defined in the scope of Eclipse Modeling Framework
(EMF), which is light weight version of CMOF. CMOF is more expressive
and harder to implement than the EMOF.

Unified Modeling Language (UML)

UML[27] became a part of OMG’s standard in 1997, is one of the most pop-
ular software modeling language. UML supports the abstraction and graph-

CHAPTER 2. BACKGROUND 9

ical representation of models. The main purpose of the UML is to specify,
visualize and documentation of Software systems. As the complexity of the
system increases, UML supports to define inter-related models and finally
overall model can be viewed as composition inter-related models. Specific
and critical problems of the system under construction are easier to express
by graphical representation of models called UML diagrams. UML2.4.1 is
the latest version released in August 2011. UML specification consists of
mainly two kinds of UML diagrams; namely structure diagrams and be-
haviour diagrams.

• Structured diagrams: These diagrams shows the static structure of
the system and relation between parts of the system at different level
of abstraction and implementation.Some of the most used structured
diagrams are Class diagrams,Object diagrams and package diagrams.

• Behaviour diagrams: These diagrams are used to show the dynamic
behaviour of the objects in a system. Some of the behaviour diagrams
are use case diagrams and activity diagrams.

2.2 Metamodelling

Metamodelling is one of the key activities in the MDE approach. Meta-
modelling can be seen as modelling of modelling languages. Definition of
metamodelling can be defined as art and science of creating metamodels,
which are qualified variants of models [14]. In general a metamodel is a
model of models [31]. The main purpose of the metamodel is to define the
syntax of the modeling language. The syntax specifies the set of rules con-
sists of conceptual structure of a modelling language, their properties and
connections to each other [21], as well as the rules for combining these con-
cepts to specify valid models [31]. In metamodelling, a model is defined by
a metamodel, which in turn can be used as a metamodel for another model
on a lower level of abstraction. The process of defining one model from
another model makes metamodelling recursive.

As explained the example in figure 2.3 Class and Reference are the
metaclasses of the metamodel of type Class diagrams of UML. Service and
Method are the instance of the metaclass Class and isMethodOf is instance
of Reference. isMethodOf shows the relation between the Class instances
Service and Method in model.

Metamodelling languages are required to specify the metamodels. Meta-
models which are specified by the metamodelling languages can serve as a
modelling language for defining another model in the next lower abstraction
level. A model in a particular level conforms to the metamodel in the level
above and can act as a modelling language for the next lower level. Figure
2.4 explains this generic pattern of metamodelling hierarchy [31].

OMG proposed 4-layer architecture for describing the relation between
metamodelling languages and metamodels. The relation between the meta-

CHAPTER 2. BACKGROUND 10

Class

Service Method

Reference

Metamodel

Model

<<instanceof>> <<instanceof>>

1..*

isMethodof

Figure 2.3: Example of Metamodelling

Modelling

Language

Model

Model

Metamodel of

Conforms to
Specified

by

…..

Conforms to

…..

Metamodel of

Figure 2.4: Generic pattern of metamodelling hierarchy

CHAPTER 2. BACKGROUND 11

modelling languages, modelling languages and models are organised in
4-layers from Mo to M3.The topmost model in the hierarchy is the meta-
metamodel known as MOF. It is a self-defined language and framework
for specifying, constructing and managing technological independent meta-
models [13]. MOF is used as a base for defining any modeling languages
such as UML or MOF by itself and conforms to itself, that means that it is
reflexive at the topmost layer of the metamodelling hierarchy. MOF contains
the metadata repository for defining metamodels.

Metamodelling

language

Modelling

language

Meta-Meta

model

Metamodel of

Meta model

Model

Original

Conforms to

Specified

by

Specified

by

MOF---M3

Conforms to

Conforms to

UML----M2

UML Class Diagram or

UML Object Diagram - M1

Object from Real World

---M0

Represented

by

Metamodel of

Figure 2.5: OMG’s 4-layer architecture of metamodelling

The following summarises the OMG metamodelling hierarchy as shown
in figure 2.5

• Level M3 contains the meta-metamodel MOF, which conforms to itself.

• Level M2 contains metamodels, e.g. the UML metamodel conforms
MOF at level M3.

CHAPTER 2. BACKGROUND 12

• Level M1 contains models, e.g. a UML class diagram or UML Object
diagrams and conforms to UML metamodel at level M2

• LevelM0 contains originals, real object in the world, which repre-
sented by model at level M1

2.3 Model Transformation

Model transformation is another key activity in the MDE approach. The
main purpose of model transformation is to avoid redundancy of code, to
save the effort and reduce errors. Model transformation in MDE is used to
automate several model related activities such as code generation, refactor-
ing, optimisation and language translation [31].

In MDE model transformation transfers the abstract models to concrete
models in other words the transformation of source models to target models.
A transformation definition is a set of transformation rules that together
describe how a model in the source language can be transformed into a
model in the target language. A transformation rule is a description of how
one or more constructs in the source language can be transformed into one
or more constructs in the target language [16].

To perform the transformation of models, they should be expressed in
some modelling languages. Syntax and semantics of the modelling lan-
guages will be specified by metamodels of modelling languages as shown
in the figure 2.6.

Source

formalism

 Source

Metamodel

Source Model

Target

formalism

Target

Metamodel

Target Model

 Formal Specification

 Model Transformation

Figure 2.6: Model Transformation

Model transformations are carried out automatically by tools in the trans-
formation processes. Each part of the transformation process is described
by a transformation definition, which in turn is written in a transformation

CHAPTER 2. BACKGROUND 13

definition language. The tool which is used for the execution of model trans-
formations is called a transformation engine [31].

Transformation of models is classified into several types.

• Homogeneous transformation: The source and target models are de-
fined within the same modelling language.

• Heterogeneous transformation: The source and target models are de-
fined in different modelling languages.

• Outplace transformation: The target models are created from scratch.

• Inplace transformation: The target model will be generated by modi-
fying the source model.

Examples of Homogeneous transformations are:

• Refactoring: To improve the internal structure of the system, without
modifying the behaviour of the system.

• Optimization: Improvement in the performance of the system, without
changing the semantics of the system.

Examples of Heterogeneous transformations are:

• Reverse engineering: Is the inverse of synthesis and extracts a higher-
level specification from a lower-level one [16].

• Migration: Changing of a software written in one programming lan-
guage to another programming language.

There are several mechanisms available for model transformation imple-
mentation. They can be categorized in either declarative or operational
approach. Declarative focuses on the what aspect, means what need to be
transformed into what. Operational focuses on the how to aspect, means
how the transformation itself need to be performed. Example of declarative
mechanisms are functional programming, logic programming and graph
transformations. They are well-founded and support bidirectional trans-
formation. They offer a simpler semantic model since order of execution,
traversal of source models, as well as generation of target models are im-
plicit [31]. Operational mechanisms are supportive when the models are
required to update incrementally. They provide sequences, selections and
increments and thus control the order of execution. QVT is a lower level
programming language specific to operational mechanism.

2.4 Service Oriented Architecture (SOA)

As business/Information technology’s (IT) systems and processes are grow-
ing day by day and becoming more and more complex. IT flexibility, perfec-
tion, redundancy and maintainability has became key factors when individ-
ual system are integrated into large distributed systems. Another problem

CHAPTER 2. BACKGROUND 14

is business/IT gap, because different business and IT people have their own
culture and professional languages. SOA is a paradigm for organizing and
utilizing capabilities that may be under the control of different leadership
domains. It provides uniform means to offer, discover, interact with and
use capabilities to produce desired effects consistent with measurable pre-
conditions and expectations. SOA is an architecture, not a framework or a
development technology, its a way of thinking and approaching the concrete
design of software architectures.

SOA is an approach that helps the system to remain scalable and flexible
while growing and that also helps to bridge the business/IT gap [19]. The
main purpose of SOA is to organise large distributed systems in individual
components. Large distributed systems are heterogeneous programming
languages, implemented in different programming platforms and infrastruc-
tures. The important concepts of SOA are:

• Technical characteristics of SOA are

Service: It is a simple business functionality that concentrates on
the business value of an interface. Services bridges business/IT
gap. They sould be simple and provide single functionality. There
should be a tight coupling inside a service.

An Enterprise Service Bus (ESB): It is an infrastructure, which en-
ables interoperability between services of distributed systems and
makes it easier to distribute the process across heterogeneous
platforms, languages and technologies by encapsulating imple-
mentation details of the services to consumers. In simple words,
it delivers the requested services to the consumers from the ser-
vice provider and makes sure that service is delivered to the
consumer. There will be no interaction between consumer and
provider, interaction thorough the ESB.

Loose coupling: It reduces the system dependencies, all services com-
municates through ESB, which provides the communication be-
tween consumer and provider. Each service provides a simple
business functionality with out depending on other dependencies.
Loose coupling reduces the chances of modifying one service im-
pact on other services. Loose coupling guarantee low dependen-
cies between services.

• SOA defines the set of roles, policies and process for systems such as
model-driven service development and distributed software develop-
ment.

• Web services are the reference for the implementation of SOA.

• To success with SOA it’s important for finding the right governance
and management such as finding the right people and balance in dis-
tributing the processes over different systems.

CHAPTER 2. BACKGROUND 15

2.4.1 Services

A Service can be defined as a self contained functionality that corresponds
to a real world activity [19]. The usage of the services will be decided on
the basis of behaviour and semantics of the service through interfaces. They
can be represented by signatures, but signatures are not sufficient to know
the behaviour of the services. A contract provides the detailed specification
of the service and the relation between a provider and consumers of the
service.

There are several services, the differences between services will be iden-
tified by their behaviour and the purpose of the service providing like creat-
ing, reading, updating, deletion of data. Services are categorized based on
their properties such as self-contained, stateless, reusable, composable and
so on.

In general services are classified into three categories according to Nico-
lai M. Josuttis [19]

• Basic services

• Composed service

• Process services

For each category of services, there is a layer of services such as Basic
layer, Composed layer, Process layer. There are three stages of expansions
by expanding each layer of corresponding category of service.

Fundmental SOA

Federated SOA

Basic Service Composed

Services

Process Services

Process-enabled SOA

Figure 2.7: Service layers and stages of SOA expansion

Fundamental SOA: This stage consists of only basic layer with basic ser-
vices. These services provides basic business functionality for a spe-
cific problem domain or a backend system to read and write data
called as basic data services. Another type of this services are ba-
sic logic services, these process some input data and produces some

CHAPTER 2. BACKGROUND 16

results. These services are very short term running, do not required
to maintain the state of the service. So, they are stateless and hides
the implementation details.

Federated SOA: It is an expansion over the fundamental SOA stage. It
allows the composition of basic services with other basic services or
can be with other composed services. A composed service provides
the access of multiple backend services. For example maintaining of
one employee details in different departments of organisation. They
are short term service and stateless services.

Process-enabled SOA: It includes process services in addition to the fed-
erated SOA. Process services are long-running flow of activities and
need to maintain the state over the multiple session. So, they are
stateful. Example of process services are shopping-cart service.

2.4.2 Loose Coupling

Loose coupling is the concept of SOA, to deal with the requirements of the
scalability, flexibility and fault tolerance [19]. The kind and degree of loose
coupling should employed will be based upon the circumstance of the sys-
tem. In order to achieve loose coupling the service providers defines the
data types used by the service, and the service consumers should accept
these types or consumers can have a mapping layer between providers data
type and their own data types in source code. This kind of coupling will
avoid the conflict if one system data types modified with out effect the other
system data types.

2.4.3 Enterprise Service Bus (ESB)

The ESB is an infrastructure, one of the key role in SOA. There are several
responsibilities of ESB

• Interoperability: It is one of the key role of ESB is to provide the con-
nectivity among different languages and different platforms.

• Routing: It provides the way to transfer the messages between con-
sumers call and provides service.

• Low coupling.

2.5 Service oriented modelling (SOM)

Service oriented modelling (SOM) is a software development practice that
employs modelling disciplines and language to provide strategic and tactical
solutions to enterprise problems[3]. Modelling process is governed by the
principles of SOA. Modelling in SOM provides the support to create models

CHAPTER 2. BACKGROUND 17

for the software entities in an organization. The models are referred to as
service-oriented assets or services.

SOM is contributed mainly by two stakeholders namely; business and
IT personnel of problem domain(business) and solution domain(IT) organi-
zations. Business stake holders, the top level executives should have the
knowledge about the service-oriented modelling languages to provide the
valuable input to the modelling artefacts. IT personnel stakeholders in-
volves in architectural modeling activities and analysis and design aspects
of services. There should be a coordination in between IT personnel and
business stakeholders and they jointly facilitate alignment between prob-
lem domain and solution domain.

2.5.1 Classification of modelling Services

Modelling services are categorized into three types based on their life cycle
state and corresponding disciplines, they are:

Conceptual service: At the stage of proposing a informal solution to a
problem, there should be a requirement of terminology of business and
technological abstraction to provide the collaboration between differ-
ent stakeholders. These abstractions are considered to be conceptual
services.

Analysis services: During the modelling process, analysis services enables
us to verify the capacity and validation of the business requirements
of the solution. At this stage the proposed solutions are required to
have a platform for verification.

Design service: Design services enables us to visualize and plan future
service behaviour,structure and peer relationships in production envi-
ronment by focusing on the message and information exchange capa-
bilities of a services [3].

2.5.2 SOM disciplines

There are several modelling disciplines in SOM to enable us to focus mainly
on modeling strategies rather than being concerned with source code and
detailed programing algorithm [3]. In service oriented development activi-
ties of services, modelling disciplines offers a set of standards and policies.
And offers best practices before construction and deployment of service into
production environment. Modelling disciplines enables the business and IT
personnel experts to identify the core process to produce design and archi-
tectural artifacts. There are six SOM disciplines [3]:.

Service-oriented conceptualization: It provides the methodologies and
process for conceptual services by means of attribute analysis and

CHAPTER 2. BACKGROUND 18

conceptual service identification. Attribute analysis yields to a set of
core attributes to identify the conceptual services by studying business
requirements and problem domain statements.

Service-oriented Discovery and Analysis: In the process of finding the
valuable solution to a business or technological problem, the service-
oriented analysis and design process enables us to identify the ser-
vices. The service-oriented discovery and analysis activities are ser-
vice typing and profiling, service analysis and service analysis model-
ing

• Service typing allows to label a service based on business or tech-
nological context and its internal structure. This information can
be used in the establishment of service profile, that can be used
in the future activities.

• Service-oriented analysis is the act of pursuing the best possible
solution by the identified service. The service analysis process
validates service practicality in the solution proposition. It also
explores reusability and loose coupling of the services.

• Service analysis modeling allows to model the service with the
proposed language, by capturing the concept of the service for-
mation and proposing the solution to the addressed problem.

Service-oriented discovery and analysis modelling concentrates on se-
mantics of the service rather than internal structure and context of the
service. This can be achieved by the specification of the service.

• The functionality of service in the specification should be trimmed
of by reducing the scope of the operations.

• By narrowing the speciality of the service. Reducing the task load
by having limits on it.

• By giving suitable name to the service. Name itself specifies what
functionalities service is providing

Semantics of the service can be obtained by reducing the spectrum of
functionality, speciality and name of the service.

Service-oriented Design: Describe the perspectives of the service in trans-
action context. A transaction context consists of service functionality,
activities, message coordination and interaction [3].

Service-oriented Business Integration: It’s a ongoing activity through
out the service development life cycle. The business architecture is
chosen to support the integration between business and technological
initiatives by means of transaction context.

Conceptual Architecture: It provides the guidance for the future tech-
nological implementation process. Those can assist to find the archi-
tecture concepts for future development of the project.

CHAPTER 2. BACKGROUND 19

Logical Architecture: It provides the guidance to address reusability, best
practices for loose coupling, interoperability and consumption. Which
assists for the collaboration of the service assets.

2.6 SMODL development suite for Web services

In this section we are going to explain SMODL declaration language to
describe web services, which provides standard Create-Retrieve-Update-
Delete (CRUD) functionality. SMODL stands for Simple Method Declara-
tion Language, it is a simple XML-dialect for declaring method signatures
and data structures. The main intuition of a SMODL model is to allow non-
technical domain experts to participate in the Web Services development by
allowing them to describe, develop and use Web Services. Once they mod-
eled the web service in SMODL. SMODL runtime engine uses the SMODL
model to generated the code for the implementation of web services.

RUnit Software developed SMODL development Suite by using number
of tools in different steps and these utilities are bundled as a plug-in for
Eclipse. It was developed in 2004 and initially used internally in RUnit Soft-
ware in response to the lack of simple tools for working with Web Services.

From 2005 to 2011 SMODL model turned out to be a simple tool for
trained programmers for quickly prototype and develop Web Services and
generate the code for different types of clients. Another advantage of SMODL
service is to provide secure and role-based access.

RUnit Software used Relax-NG schema language to specify the SMODL
model. Relax-NG is a schema language for XML. It is simple and easy to
learn and has both XML syntax and a compact non-XML syntax. Using
the Relax-NG schema language SMODL metamodel was specified [29] as
shown in the list 2.1. The default value for the name space of SMODL is
http://smodl.org/v1. The grammar for Service in the list 2.1 represents as
follows:

• NameAttr, TargetNamespaceAttr It should have NameAttr, TargetNames-
paceAttr

• Doc? means zero or one DOC

• Method+ should have one or more method

• Struct* zero or more struct

SMODL metamodel defined with Relax-NG Schema language

default namespace smodl = "http://smodl.org/v1"
grammar {
start = element service {

NameAttr, TargetNamespaceAttr, Doc?,
(Method+ & Struct* & Fault* & Typedef*)

}

CHAPTER 2. BACKGROUND 20

Doc = element doc { text }
Method = element method { NameAttr, Doc?, Arg*, Result }
Struct = element struct {
NameAttr,
attribute base { NamePattern }?,
Doc?, Field+

}
Fault = element fault { NameAttr, CodeAttr, Doc? }

Result = element result { TypedElemCommon }
Typedef = element typedef { NamedTypedElem }
Arg = element arg { NamedTypedElem }
Field = element field { NamedTypedElem }

TypedElemCommon = TypeRefAttr, Doc?, Constrain*, NullableAttr?
NamedTypedElem = NameAttr, TypedElemCommon

Constrain = MinLength | MaxLength | Pattern |
MinExclusive | MaxExclusive |
MinInclusive | MaxInclusive

MinLength = element minLength { attribute value { xsd:unsignedInt }, Doc? }
MaxLength = element maxLength { attribute value { xsd:unsignedInt }, Doc? }
Pattern = element pattern { attribute value { string }, Doc? }
MinInclusive = element minInclusive { attribute value { string }, Doc? }
MaxInclusive = element maxInclusive { attribute value { string }, Doc? }
MinExclusive = element minExclusive { attribute value { string }, Doc? }
MaxExclusive = element maxExclusive { attribute value { string }, Doc? }

TargetNamespaceAttr = attribute targetNamespace { xsd:anyURI }
NameAttr = attribute name { NamePattern }
TypeRefAttr = attribute type { TypePattern }
BaseAttr = attribute base { TypePattern }
NullableAttr = attribute nullable { "false" | "true" }
CodeAttr = attribute code {
xsd:integer { minInclusive = "-32768" maxInclusive = "-1000" }

}

NamePattern = xsd:string { pattern = "[A-Za-z][A-Za-z0-9_]*" }
TypePattern = xsd:string { pattern = "[A-Za-z][A-Za-z0-9_]*(\[\])*" }

}

Listing 2.1: SMODL metamodel defined with Relax-NG Schema language

An example of SMODL model for a Web Service with CRUD functionality
of the user defined with RelaxNG-Schema language is given in the given
listing 2.2

-<service name="repositoryService" xmlns="http://smodl.org/v1">
-<method name="loginUser">

<arg type="string" name="userName"/>
<arg type="string" name="password"/>

CHAPTER 2. BACKGROUND 21

<result type="bool"/>
</method>
-<method name="logoffUser">

<result type="bool"/>
</method>
-<method name="createNewUser">

<arg type="Profile" name="userInfo"/>
<result type="bool"/>

</method>
-<method name="getProfile">

<result type="Profile"/>
</method>
-<method name="updateProfile">

<arg type="Profile" name="userInfo"/>
<result type="bool"/>

</method>
-<method name="getCurrentUsername">

<result type="string"/>
</method>
-<struct name="Profile">

<field type="string" name="userName"/>
<field type="string" name="password"/>
<field type="string" name="email"/>
<field type="dateTime" name="birthdate" nullable="true"/>

</struct>
</service>

Listing 2.2: Example of SMODL model defined with Relax-NG Schema language

2.6.1 Model-driven service development (MDSD) in SMODL

As mentioned in section 2.4 SOA organises systems across heterogeneous
languages and platforms. SMODL Development Suit (SDS) is collection
of different utilities required for generating and run SMODL web service.
These utilities are bundled into a plugin for Eclipse. SMODL service is
basic service with standard CRUD functionality. Specific behaviour of the
SMODL service based upon different methods with different attributes and
different data types and structures. SMODL service can be developed in
MDD approach by creating a SMODL model and uses model transformation
for generating the code, which can be used by SMODL runtime engine to
generate code to implement the SMODL service.

SMODL uses DPF for defining SMODL model and implementing model
transformation specific to SMODL service. we can refer this as model-
driven service development (MDSD) in DPF. Figure 2.8 shows MDSD ap-
proach for SMODL service.

CHAPTER 2. BACKGROUND 22

DPF work
bench tool

Modelling

SMODL
Model Model transformation

SMODL
XML-dialect

PHP JAVA C#

SMODL
Runtim
engine

SMODL
Web
service

Figure 2.8: MDSD approach for SMODL

2.7 Diagram Predicate Framework

In early 2006, Bergen University College and the University of Bergen, Nor-
way started a new research project Diagram Predicate Framework (DPF) to
unfold the full potentials of MDE. The aim of DPF is to formalise the con-
cepts of MDE such as metamodelling, model transformation, model man-
agement and version control based on category theory and graph transfor-
mations. DPF extended the formalism of generalized sketches developed by
Zinovy Diskin and a group of researchers from Latvia [5].

DPF is a graph-based specification framework and provides diagram-
matic metamodelling. In diagrammatic modelling models are formalised as
diagrammatic specifications, which is a combination of a underlying graph
and a set of diagrammatic constraints. So, metamodelling considers both
typing and constraints.

The syntax (structure) of the specifications are defined by the graph and
part of the graph marked with atomic constraints, that specifies this part of
the graph should have special semantics. Here we present the definition of
the Signature, Specification and Atomic constraints referred from [31]:

• A signature Σ = (ΠΣ , αΣ) consists of a collection of predicates ΠΣ ,
each having a symbol π ∈ ΠΣ , an arity (or shape graph) αΣ , a visuali-
sation and a semantic interpretation.

• A specification S =
(
S, CS : Σ

)
consists of a underlying graph S to-

CHAPTER 2. BACKGROUND 23

gether with a set CS of atomic constraints (π, δ) on S with π ∈ ΠΣ for
a given signature Σ .

• An Atomic constraint (p, δ) added to a graph S is given by a predicate
symbol p and a graph homomorphism δ : αΣ(p)→ S.

The kind of predicates, visualisation and semantic interpretation of pred-
icates to be include into a signature will be based upon the specific mod-
elling environment. The semantics of a predicate p is given by the set of its
instances ι : O→ α(p) where each ι is a graph homomorphism into the arity
of the predicate [31]. Table 2.1 shows the generalised predicates used in
service-oriented modelling.

The description for the predicates as shown in table 2.1

Multiplicity: The shape graph of the multiplicity predicate is two nodes
and an arrow between them, the semantic interpretation are imple-
mented in a java based validator and the symbol is [mult(m,n)]. The
multiplicity of arrows between two nodes should be greater than or
equal to m and less than or equal to n in the instance graph.

Irreflexive: The shape graph of the irreflexive predicate is one node and
with a reflexive one arrow with the symbol is [irrf]. It forbids the
morphism relation to the same node.

exclusive-or: The shape of the exclusive-or predicated with three nodes
and two arrows and the symbol is [XOR]. If there is a [XOR] between
arrows XY and XZ, then in instance graph either arrow of type XY or
arrow of type XZ should be present. The [XOR] is not valid if both type
of arrows exists or if both type of arrows does not exist.

The semantics of a specification is defined as follows[31]:

• The semantics of a specification is given by the set of its instances
(I , ι)

• An Instance (I , ι) for a given specification S is a graph I together with
a graph homomorphism ι : I→ S which satisfies the atomic constraints
CS .

In diagrammatic metamodelling, DPF defines the relation between mod-
els at any two adjacent levels of the meatmodelling hierarchy by confor-
mance. The conformance relation is defined by two properties namely;
typed by and conforms to.

Typed by: If there exist a typing homomorphism between two underlying
graphs ι[i] : S[i] → S[i + 1] of the corresponding specifications Si and
Si+1, then Si at level i is said to be typed by Si+1 at i+ 1 level of the
metamodelling hierarchy.

CHAPTER 2. BACKGROUND 24

p α
∑

2(p) Proposed Vis. Semantic Interpretation

)(: xfxXx 

[n.. m]
X Y

f

2

 f
1

∀ x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n and

n ≥ 1
 [mult (n, m)]

[irreflexive]

)(: xfxXx 

[exclusive-or]

 [xor]
g

f

Y X

Z

1
 f

2

3

g

∀x ∈ X: (f(x) = ∅ ⋁ g(x) =

∅) and

(f(x) ≠ ∅ ⋁ g(x) ≠ ∅)

X

 [irr]

f

 f 1

Table 2.1: Semantics of predicates

CHAPTER 2. BACKGROUND 25

Conforms to: If there exist a typing morphism between two underlying
graphs ι[i] : S[i] → S[i + 1], then Si is said to be conform to Si+1 at
i+1 level, if (S[i], ι[i]) is an instance of Si+1 ; i.e. ι[i] satisfies all atomic
constraints[31].

2.8 DPF Workbench

DPF Workbench is a tool which implements concepts of DPF such as graph
based formalisation of (meta)modelling and code generation based on meta-
models. There has been a lot of effort in developing DPF tool since 2004 [17]
but none of them were considered as a efficient tool for continuing devel-
opment. In 2011, the first version of DPF editor was developed by Øyvind
Bech [1] and Dag Viggo Lokøen using the technologies EMF and GEF with
diagram specification editor with predefined signatures. With further ex-
tensions it was renamed to DPF Workbench. Which consists of a specifica-
tion editor and signature editor and offers fully diagrammatic specification
of domain-specific modelling languages [23] with code generation facility
[32]. In DPF Workbench, the specification editor consists Node and Arrow
of DPF metamodelling language.

The features of DPF Workbench are

• One can define an arbitrary number of metalevels in a metamodelling
hierarchy

• Modelling in DPF Workbench provides graph-based formalisation for
metamodelling

• Typing morphisms and constraint validators checks the conformance
relation between metamodels and models in the metamodelling hier-
archy

• Signature editor provides the facility to define new predicates with
shape graph and graphical icon for domain specific modelling

• Signature editor allows to define arbitrary signatures

• Validators in signature editor facilitate semantics of the predicate to
provide either in Java or in Object Constraint Language (OCL)

• By storing the DPF specifications in EMF data storage as XML meta-
data interchange (XMI), guarantees the interoperability with frame-
works and tools

• Code Generator provides the facility to define transformation rules for
model transformation from diagram model to textual representation

The figure 2.9 shows the DPF metamodel in DPF specification editor. At
Mn level of metamodelling hierarchy DPF metamodel consists of Node to
represent any object and Arrow to shows the relation between two nodes.

The figure 2.10 shows a specification of the metamodel for classes with
attributes used to specify the SMODLmetametamodel on high level defined

CHAPTER 2. BACKGROUND 26

Figure 2.9: DPF Metamodel

at Mn−1 with the DPF modelling language. The metamodel conforms to DPF
metamodel.

• We defined Class and Datatype of type Node

• We defined Reference and Attribute of type Arrow

Figure 2.10: An example of metamodel specified by DPF metamodel

The figure 2.11 shows a subset of the SMODLmetamodel Mn−2 which
conforms to SMODLmetametamodel in the next lower level of metamod-
elling hierarchy. We defined Service, Method of type Class and isMethodOf
of type Reference to represent the morphism between Service and method.
The [mult(1,*)] predicate on the arrow isMethodOf to represent there should
be at least one morphism between types of Service and Method in instance
graph of SMODL metamodel in the next lower level of metamodelling. In
DPF Workbench tool the default constraint is [mult(0,*)], if there is no pred-
icate on any arrow.

CHAPTER 2. BACKGROUND 27

Figure 2.11: An example of SMODLmetamodel specified by SMODLmetametamodel

Figure 2.12 shows the selection of Signature editor from DPF workbench
wizard. The figure 2.13 explains defining a new predicate [XOR4] in the
signature editor used for SMODL modelling. According to documentation of
SMODL model the Method can have result from any one of built-in datatype,
array of built-in datatype, reference to a struct type and array of struct type.
It is specified with a exclusive or constraint between four inputs. Once
[XOR4] predicate is defined with visualisation and semantic interpretation,
in OCL. To use this constraint in the next lower level of metamodelling we
have to include the defined signature in the specification editor.

Figure 2.12: Signature wizard in DPF Workbench

CHAPTER 2. BACKGROUND 28

Figure 2.13: Signature editor in DPF Workbench

2.9 Metamodel based Code Generation

In 2012, Master’s student Anders Sandven extended the functionality of
DPF Editor (currently DPF Workbench), with the code generation based on
metamodel using the Xpand SDK (1.1.1) [41] as a plug-in inside the Eclipse
Indigo (3.7) [10]. The Code generation facility support model-to-text trans-
formation. It provides a generalised solution for generating code to any
domain specific modelling language (DSML). The features of Code genera-
tors supports clear expression of domain concepts, integration with Eclipse
and standalone generators [32].

The features of the Code generators are:

Xpand metamodel: The Xpand metamodel is a core functionality of Code
generators. It provides the mapping between DPF model types and
custom Xpand types.

Type system: The type system enables Xpand to understand the modelling
constructs such as DSML specific getter and setter or the functionality
defined in the DPF Ecore metamodel.

Workflow integration: It allows to integrate the DPF metamodel with dif-
ferent components offered by the Xpand such as Modelling Workflow
Engine (MWE).

CHAPTER 2. BACKGROUND 29

Eclipse integration: Eclipse integration provides the support of using ed-
itors such as template editor for Xpand, extension editing with Xtend
and constraints checking with Check.

Project environment: It facilitates a wizard for the generation of Code
generation Project structure.

The figures 2.14 and 2.15shows how to create a Code generator project
in Code generator wizard. We created a new project no.hib.dpf.examples.smodl
for model transformation from diagram model to textual model. By default
it creates template files for templ.xpt and workflow.mwe as shown in figure
2.16.

Figure 2.14: Creation of Code generator project

CHAPTER 2. BACKGROUND 30

Figure 2.15: Creation of Code generator project

Figure 2.16: Creation of Code generator project with defalut templ.xpt and Workflow.mwe

Chapter 3

Problem and requirement
analysis

This chapter explains about what type of research method and develop-
ment methodologies that are used during problem analysis and requirement
phase of this thesis. We also describe technologies that are used for the im-
plementation of the solution.

3.1 Problem Anlysis

The first goal of the thesis is to define the metamodel for SMODL in the
DPF Workbench. This involves a case study of SMODL model, which was
developed by RUnit software.

According to Gary Thomas [36] Case studies are analyses of persons,
events, decisions, periods, projects, policies, institutions, or other systems
that are studied holistically by one or more methods. The case that is the
subject of the inquiry will be an instance of a class of phenomena that pro-
vides an analytical frame—an object—within which the study is conducted
and which the case illuminates and explicates.

DPF provides the formalisation of SMODL metamodel in a higher level of
abstraction specified with the DPF formalisation. We introduce a formalisa-
tion by multilayered metamodelling hierarchy for services. The innovation
of the first part of the thesis is to define metamodel for SMODL with re-
quired constraints. Evaluation of this part is done by comparing the defined
metamodel in DPF Workbench with other approaches.

The second goal of the thesis is to implement a bidirectional model trans-
formation from DPF SMODL model to textual SMODL model and reverse
transformation from XML SMODL model to DPF SMODL model. It’s a de-
velopment of a new artifact for model transformation. We consider the re-

31

CHAPTER 3. PROBLEM AND REQUIREMENT ANALYSIS 32

search of this part as technological research, which is defined by Ida Sol-
heim and Ketil Stølen [35] as follows.

Technology research is a research for the purpose of producing new and
better artifacts. The technology researcher seeks principles and ideas for
manufacturing of new and better artifacts, which may be materials, auto-
mates, medicines, oil production methods, computer programmes, etc. The
basic question is: How to produce a new/improved artifact?

The innovation of this part is to develop an artifact for transferring DPF
SMODL model to textual SMODL model with help of the Code generation
tool as a transformation engine. Another artifact is to develop a plug-in for
transformation of textual SMODL model to DPF SMODL model.

3.2 Development Process

This section describes what development methodologies are applied during
development life cycle of this project. And also about the coding standards
and technological tools used during development.

3.2.1 Development methodology

During this project time we chosen to follow the manifesto of Agile develop-
ment methodologies, which was introduced in 2001 by a group of experts
referred as Agile [4]. We adopted one of the well know methods Extreme
Programming (XP) [2] as development method for this project. Also we
now describe the the manifesto of Agile and how it was applied during the
project as follows:

Individuals and interaction over process and tools: The team members
communicate with others during the bi weekly DPF project meetings.
Each DPF project team member have a chance to review about what
they have done and what they need to do for the next meeting. Bi
weekly meeting gave a chance to improve the technological knowledge
by discussing with team members and suggestions from supervisor.

Working software over comprehensive documentation: The Source code
of the project was never treated as a documentation. We always use to
maintain the documentation about the code in simple and salient man-
ner about the functionality. The next developer who is going to work
on this project can easily understand whats happening in the code.

Customer collaboration over contract negotiation: RUnit software man-
ager specified the contract in terms of requirements what they need
us to develop. And provided the collaboration during the case study of
SMODL service.

CHAPTER 3. PROBLEM AND REQUIREMENT ANALYSIS 33

Responding to change over following a plan: We always use to have short
term plans in development of software, if any changes are made by
client, development process is easily adaptable to changes in develop-
ment of software.

As said earlier, followed the XP as development methodology since it was
not possible to practice all principles of XP. This project practiced some of
the principles of XP in the development process such as:

Customer team member: Customer use to present whenever there is a
requirement for discussion about the project.

Short cycles: As said early, we use to have a bi weekly project review
meetings. When ever project comes to a demonstration stage, we use
to have meeting with customer.

Continuous integration: We used Subversion source control as source
code repository that is available at Bergen University College. Once
the assigned task is finished we use to check in the code into subver-
sion and check out the updated version of the DPF Workbench, when-
ever changes are made. The master student will leave the project on
completion of their thesis, but the subversion repository will keep the
back up of the source code to hand over to the next member of the
project.

Pair programming: One of the key principle of XP is pair programming
is not really practiced in this project. As this thesis is aimed on a
single master student thesis, there is no chance of participate in pair
programming.

3.2.2 Coding standards

One of the important practice of XP is Coding. At the starting stage of the
DPF project, the team members has fixed a set of rules for coding stan-
dards. The code looks familiar and is easy understandable by just looking at
name of the variable or a function. Coding standard practices supports the
collective ownership and is easily understandable for a new entry developer.

Coding standards provides the coding consistency from developer to de-
veloper and avoid the conflict for naming conventions. Coding standards
used in this project are Eclipse Naming Conventions [9]. According to the
eclipse naming conventions, project should avoid company or person names
in source code. Eclipse Naming Conventions have different naming stan-
dards for different elements in the project.

The naming conventions are used in this projects are

Projects: no.hib.dpf.examples.smodl

CHAPTER 3. PROBLEM AND REQUIREMENT ANALYSIS 34

Package: no.hib.dpf.m2m.transformation

Class: SmodltoDPFTransformation

Method: protected void createTheDPFFiles

Variable: DSpecification newSpec

3.2.3 Technological tools

This section explains about the technologies used for this project. For pro-
viding the specification formalism of SMODL service, this project has been
developed by using the DPF Workbench tool. During the implementation
of textual to model transformation we used XML parser for parsing textual
SMODL model and Eclipse Indigo (3.7) for developing a plugin for transfor-
mation from textual model to a DPF model.

Model transformation from DPF SMODL to textual SMODL model trans-
formation (M2T)[7] there are several template engines like Java Emitter
Templates, Acceleo, Xpand [7]. But as mentioned in section 2.9 Code gener-
ation facility of DPF Workbench is a model transformation engine based on
Xpand SDK (1.1.1). Code generation facility allows to read the DPF meta-
model with Xpand types. So, implementation of transformation from DPF
SMODL model to textual model has been chosen to use Code generation
tool as model transformation engine, Xpand and Xtend textual languages
of XPand framework for writing code generation templates and Modeling
Workflow Engine (MWE) [8] to control the execution of generators.

3.3 Xpand Framework

The section describes about the Xpand and Xtend textual languages of Xpand
framework used for creating code generation templates. Modeling Work-
flow Engine (MWE) to control the execution of generators. Examples are
given in this section for Xpand and Xtend textual language are from the
implementation part of this thesis.

Xpand is included as a part of the Eclipse Model to Text (M2T) project
and maintained by Itemis [18], one of the active strategic member for de-
veloping Eclipse products. It was originally developed by openArchitecture-
Ware before it become a part of the Eclipse M2T [28].

Xpand is a generator framework with textual languages like Xpand, Xtend,
Check. The execution of the generators will be controlled by Modeling
Workflow Engine (MWE), which is under the project Eclipse Modeling Frame-
work Technology (EMFT). The textual languages are constructed based upon
the common expression language and type system, which reduces the time
and effort to learn the each textual language. Type System provides the

CHAPTER 3. PROBLEM AND REQUIREMENT ANALYSIS 35

access to the registered metamodel implementations with their types. Ex-
pression language provides the concrete syntax for executing the expres-
sion by using the type system. The delimiter :: is used for the name space
fragments. The fully qualified name looks as given below

• dpf::Specification

• dpf::Service

Figure 3.1 shows the types of the DPF SMODL metamodel registered for
code generation.

Figure 3.1: DPF SMODL metmodel type system

3.3.1 Xpand

The Xpand language is used to control the format of generating output. The
template file extensions are .xpt. The guillemets (« and ») are supported by
the eclipse editor with key board short cuts Ctrl+< and Ctrl+>.

(1) of list 3.1 refers to the general structure of the Xpand template file
and description of the statements in (1) are explained as follows:

IMPORT : There can be any number of IMPORT statements in a template
file, followed by any number of EXTENSIONS and one or more DE-
FINE blocks. IMPORT states allows to include the namespace, which
contains the fully qualified names of types and definitions.

CHAPTER 3. PROBLEM AND REQUIREMENT ANALYSIS 36

EXTENSION: This statement allows to include utility extensions and com-
ponents of org.eclipse.xpand.util.stdlib package. It also points to the
extend files with .ext extensions. Extend files provides the additional
features to the metamodel classes.

NOTE: In order to use org.eclipse.xpand.util.stdlib package,
one need to add a dependency to the plug-in. To import
Xtend file with .ext extension, it should be in the same class
path of template file

DEFINE: These are called as templates or definitions. Its a identifiable
unit with template name and metamodel class name to which template
is defined. (2) of list 3.1 refers to the example of DEFINE block main
is the template name and the specification is the metamodel class. The
DEFINITION body contains a sequence of statements including some
text.

FILE: The target file name is expressed in the FILE statement followed by
the file extension with concatenation operator. The body will contain
any other statements. In the above listing of code, RepositorySer-
vice.xml file is created into file system with the name of the service
class with file extension .xml.

EXPAND: It works exactly as the subroutine call. It expands another defi-
nition and output will be inserted at the place where it is defined and
continues with another statement.

«EXPAND graph FOR this.graph» In that sentence graph is the un-
qualified name for the fully qualified type this.graph.

NOTE: The expanded definition should be in the same tem-
plate file , otherwise it should be specified along with the
template file name, like «EXPAND Templatefile::graph FOR
this.graph»

FOR vs. FOREACH: In the expand statement if FOR is specified then the
definition is executed for the result of target expression. If FOREACH
specified the definition is executed for the collection type of target
expression. For example

«EXPAND graph » is equal to «EXPAND graph FOR this»

NOTE: FOR this is the default one if none of them is speci-
fied.

(1) «IMPORT dpf»

«EXTENSION org::eclipse::xtend::util::stdlib::io»
«EXTENSION template::smodlWrapper»
«DEFINE service FOR dpf::Service»

«FILE this.name+".xml"»

CHAPTER 3. PROBLEM AND REQUIREMENT ANALYSIS 37

«EXPAND graph FOR this.graph»

«ENDFILE»
«ENDDEFINE»

(2) «DEFINE service FOR dpf::Service»
«FILE this.name+".xml"»
«EXPAND graph FOR this.graph»
«ENDFILE»
«ENDDEFINE»

Listing 3.1: Example for Xpand template

3.3.2 Xtend

Its a primarily object oriented language. Syntactically and semantically
Xtend is similar to Java programming language with additional features
such as Type inference, Recursions, Cached and Private extensions [11].
The main purpose of creating extensions is to support the model transfor-
mations. Xtend provides the facility to define the libraries for independent
operations and non-invasive independent metamodel extensions in either
java methods or Xtend expressions [41]. The Xtend file extension is .ext.
Example of Xtend file is given in listing 3.2

import dpf;

extension org::eclipse::xtend::util::stdlib::io;

setQuotes(String strName):
"\""+strName+"\"";

setNextArg(dpf::nextArg this):
"<arg type= "+setQuotes(setArgType(this.target))+" name="+setQuotes(this.target.name)+"/>";

String nextArgRecursion(dpf::nextArg this): this.target.getANextArgs().size>0 ?
setNextArg(this)+" "+nextArgRecursion(this.target.getANextArgs().first()):
setNextArg(this) ;

Listing 3.2: Example for Xtend template

The description about the statements in the Xtend file are as follows:

Import: To import the name spaces.

Extension Import: To import libraries and also another extension files.

Extension methods: These methods allows to add new feature to the ex-
isting types without modifying them.

CHAPTER 3. PROBLEM AND REQUIREMENT ANALYSIS 38

The lines of code in (1) of list 3.3 shows the extension method to add
the double quotes for given type name strName. These extension can
be invoked as setQuotes(strName).

Extensions are by default public, but if we want to hide the extensions
need to add keyword private in front of the extension as shown in (2)
of list 3.3.

If we are invoking the same extension very frequently, we can add
the keyword cached to the extension to increase the performance by
caching the result as shown in (3) of list 3.3.

Type Inference: For Extensions are not required to specify the return
type, return type will be derived from the extension expression. (4)
of list 3.3 shows how the the return type will be derived as String
from the given expression.

NOTE : But for the Recursive extensions return type is not
inferred, need to specify it explicitly

(5) of list 3.3 shows the return type of recursive nextArgRecursion
extension String is specified explicitly in the extension.

(1) setQuotes(String strName):
"\""+strName+"\"";

(2) private setQuotes(String strName):
"\""+strName+"\"";

(3) cached setQuotes(String strName):
"\""+strName+"\"";

(4) setQuotes(String strName):
"\""+strName+"\"";

(5) String nextArgRecursion(dpf::nextArg this):
this.target.getANextArgs().size>0 ? setNextArg(this)+"
"+nextArgRecursion(this.target.getANextArgs().first()):
setNextArg(this) ;

Listing 3.3: Example for Xtend extensions

3.3.3 Modeling Workflow Engine (MWE)

MWE is XML-based configuration file, which controls the execution of mod-
elling workflow components in sequence order. Modelling components can
be of model parsers, model validators, model transformers and code gener-
ators. In general MWE workflow consists of reader components and gen-
erator component. In the context of this thesis the components are code
generator component and DPF metamodel reader component.

CHAPTER 3. PROBLEM AND REQUIREMENT ANALYSIS 39

General content of the MWE file is explained as follows .

Properties: The properties can be declared in the same worlflow file or in
another properties file. The name of the properties file will be included
in the properties declaration as shown in (1) of list 3.4.

Components: Reader Component : The reader component will read the
input dpf metamodel and stores the metamodel in a model slot named
as dpf as given in lines of code (3) of 3.4. The metamodel to be read
by the component should be instantiated before the reader component
as shown in (2) of 3.4.

Generator Component: In generator first we have to specify the meta-
model reference and then reference to the Xpand template file. Next
is the path reference of the source folder where to place the generated
files with the beautifier specification for the generated code as shown
in (4) of list 3.4.

Beautifiers: To control the format of the generated output file. Xpand
workflow component configured with two beautifiers. They are

<postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>

<postprocessor class="org.eclipse.xtend.typesystem.xsd.XMLBeautifier">

Bt implementing postprocessor interface, we can define customized
beautifiers.

(1) For a general declaration of a property
called as simple property
<property name="dpf_model" value=""/>

To include the property file
<property file= "my.properties"/>

(2) <bean class="no.hib.dpf.codegen.xpand.metamodel.DpfMetamodel" id="mm_dpf"/>

(3) <component class="no.hib.dpf.codegen.xpand.metamodel.workflow.DpfReader">
<dpfMetaModel value="${dpf_metamodel}"/>
<dpfModel value="${dpf_model}"/>
<metaModel idRef="mm_dpf"/>
<modelSlot value="dpf"/>

</component>

(4) <component class="org.eclipse.xpand2.Generator">
<metaModel idRef="mm_dpf"/>
<expand value="template::Smodl::main FOR dpf"/>
<outlet path="${src-gen}$">

<postprocessor class="org.eclipse.xtend.typesystem.xsd.XMLBeautifier">
<maxLineWidth value="120" />
<formatComments value="true" />
<fileExtensions value=".xml"/>

CHAPTER 3. PROBLEM AND REQUIREMENT ANALYSIS 40

</postprocessor>

</outlet>
</component>

Listing 3.4: Workflow controls

As shown in figure 3.2 the overall view of the MWE controls the exe-
cution of generator components. Once the metamodel and model of the
SMODL specified by the DPF workbench tool, DPF SMODLmetamodel should
be instantiated in the workflow. Registering of DPF metamodel in reader
component, allows to convert the DPF metamodel types to Xpand types and
stores in the modelslot, this transformation is done though Code generator
facility. Generator component controls the execution of Xpand and Xtend
template files.

DPF metamodel

DPF model

conforms

Reader

component

Generator

component

DPF Workbench code

generation tool

Xpand and Xtend

Texual

Output

Workflow Components

Figure 3.2: Workflow control

3.4 eXtensible Markup Language (XML)

For implementing the model transformation from textual SMODL model to
DPF SMODL model we used a XML [40] parser for parsing the SMODL XML-
dialect. The first working specification of the XML was released in 1998
by the contribution of the World Wide Web Consortium (WWW). The main
purpose of XML is to transport and store data. In order to do transformation
of a textual SMODL model to the DPF SMODL model we need to traverse
the textual SMODl model.

In XML documents the data is stored in a tree structure with root and
child elements. In order to traverse the tree structure XML parsers are re-

CHAPTER 3. PROBLEM AND REQUIREMENT ANALYSIS 41

quired. XML parsers reads the XML documents and provides some mecha-
nisms, that can be used by the programs. There are several types of parsers,
some of the well known are Simple API for XML (SAX), Document Object
Model (DOM).

SAX: It reads the each XML document and creates a event for each unit.
So the calling program can avoid the unnecessary parts. Even it runs
very fast. SAX does not provide much functionalities, the user need to
provide their own functions for creating the data structures

DOM: It reads the XML document and stores the internal structure in the
form of tree in the memory. DOM is a memory intensive and allows to
read the document repeatedly. But it takes more time if the document
is too large.

In the context of this thesis DOM parser has been chosen for traversing the
XML document, as it is providing more functionalities to read the elements
of the XML documents.

Chapter 4

Solution

This chapter explains how the modelling of SMODL is defined in DPF and
presents a bidirectional model transformation of DPF SMODL model to tex-
tual SMODL model. We also show how this is implemented in DPF Work-
bench.

4.1 Defining models and modelling languages
for SMODL web Services in the DPF Work-
bench

Before translating a diagrammatic DPF specification to a textual SMODL
model, which in turn can be used for implementing web services. For this
we need to define a modelling languages for SMODL in DPF.

According to Cesar Gonzalez-Perez and Brian Henderson-Sellers, a model
is a statement about a given subject under study (SUS), expressed in a
given language [15]. In the context of this thesis the SUS is SMODL ser-
vices. While defining a DPF SMODL model in DPF, the structure of DPF
SMODL model should coincide with the structure of the SMODL service.
Both should be related by a structure, referred to as homomorphic [14]. Op-
erations and properties of the entities in a model should provide the same
functionality of the entities in SUS, i.e. entities in the model are substitutes
for the entities in the SMODL service. If the DPF SMODL models are not
homomorphic to SMODL service, it means that we are violating the defining
properties of the models. Figure 4.1 shows a DPF SMODL model homomor-
phic to SMODL service and the relation between them.

The connection between model and SUS is described in two ways:

A forward-looking models: A model is created to specify the SUS, that
doesn’t exists.

42

CHAPTER 4. SOLUTION 43

A backward-looking models: A model is created, to represent an existing
system in the absence of SUS.

According to Cesar Gonzalez-Perez and Brian Henderson-Sellers, there are
three kinds of interpretive mapping between model and SUS [14]. They are

• Isotypical: Its a one-one relationship between entities of model and
SUS.

• Prototypical: One entity of model can be mapped to more than one
entity in SUS.

• Metatypical: One entity of model can be mapped to a set of entities in
SUS declaratively.

The connection between a DPF SMODL model and a SMODL service is
defined as forward-looking models representation, as shown in the figure
4.1 DPF SMODL model looking forward to create the SMODL service. All
DPF SMODL entities should be connected to SMODL service entities but
the reverse need not be satisfied. Figure 4.1 shows the general interpretive
mapping between DPF SMODL model and SMODL service.

Smodl Service DPF Smodl model

Figure 4.1: Homomorphic and Interpretive mapping of models

Before defining what kind of interpretive mapping that exists between
the DPF SMODL model and the SMODL service, we will first define the
modelling language for modelling DPF SMODL models and then we will
continue with the mapping between them.

4.1.1 Modelling language for the DPF SMODL metmeta-
model

A modelling language is defined as an organized collection of model unit
kinds that focus on a particular modelling perspective [14]. A model kind

CHAPTER 4. SOLUTION 44

is a specific kind of model, characterized by its focus, purpose and level of
abstraction. In our context model kind is DPF and the kind of the SMODL
model is given by the collection of DPF model unit kinds such as Node and
Arrow not by the nature of the SMODL service. Collection of DPF model
unit kinds are referred to as DPFmetamodel.

In the reference document of SMODL service [30] we can see that each
element of the SMODL is a collection of other SMODL elements with some
properties. So, we define the abstract SMODL metametamodel as shown in
figure 2.10 in DPF at higher level and it consists of:

• Class and DataType of model unit kind of Node.

• Reference and Attribute of model unit kind of Arrow.

The figure 4.2 shows the relationship between DPF modelling language,
DPF metamodel and SMODLMetaMetaModel at a higher level of abstraction
of modelling at level Mn.

isComposedOf

isComposedOf

uses

DPF Metamodelling

Language

DPF Metamodel

Node

Arrow

DPF SMODL

MetametaModel

 *

*

*

*

1

*

 1

*

Figure 4.2: Relation between SMODLmetametamodel and DPF metamodel

At the level Mn, we can say the interpretive mapping between the DPF
SMODL metametamodel and the SUS SMODL service is prototypical be-
cause the entity Class is mapped to a set of entities of SMODL service like
Service, Method and so on. The DataType is mapping to a set of built in
types such as int, long, string and so on. The Reference represents the as-
sociation between two entities and Attribute represents the attribute type of
the entities of SMODL service. Figure 4.3 shows the prototypical mapping
between SMODL metametamodel and SMODL service at level Mn.

Here we are describing how the conformance relation are satisfied.

• The DPF SMODL metametamodel is specified by the DPF metamod-
elling language and is typed by the DPF metamodel.

DPF Workbench tool supports multi-layer modelling, we continued defining
new modelling layers for DPF SMODL models until DPF SMODL model can
be able to use by RUnit Software for further implementation of the web

CHAPTER 4. SOLUTION 45

Service Doc

Metho

d
Arg

Struct

Class

Type

Metametamodel

(DPF)

SUS (SMODL)

Figure 4.3: Prototyping mapping of DPF SMODL model and SMODL service

service. In the following section we will give the details how to define the
modelling language for the next level of modelling.

4.1.2 Defining the modelling language for SMODLMeta-
Model

All SMODL XML belongs to a namespacehttp://smodl.org/v1. In the speci-
fication of SMODL XML-dialect [30], the root element is Service. The ele-
ments of the SMODL specifications are given below:

Service: Service is collection of

• Zero or one doc element

• One or more method elements

• Zero or more struct elements

• Zero or more typedef elements

The attributes of the Service are name and targetnamespace that is a
URI.

Method: Method is a sequence collection of:

• Zero or one doc element,

• A sequence of one or more arg elements, the sequence specifies
the ordering of the of the method

• The Method should have a unique result

Doc: It specifies the semantics or other documentation of a particular
SMODL element

Arg: It specifies the name and the type of the argument in a service method

Result: To specify the result of the method, it can be a built in data types
or it can be struct data type

CHAPTER 4. SOLUTION 46

Struct: Its a structure or complex type with a collection of type fields.
Optionally, struct can extends another struct. Its a collection of:

• Zero or more doc element

• One or more field elements

Field: It specifies the name and type of the field in a struct of the service,
type can be a built in data type.

Typedef: Its a alias name of a particular type along with some constraints,
the type need to fulfil

The DPF SMODL metamodel is an instance of DPF SMODL metameta-
model with model unit kind Class, DataType, Reference and Attribute. At
modelling level Mn−1 the interpretive mapping between SMODL metameta
model and SMODL service is a Isotypical and Prototypical mapping as shown
in figure 4.4.

Service Service service

doc

method

struct

Doc

Method

Struct

Arg

Field

SimpleType

string

int

dataTime

long

double

binary

bool

float
field

arg

Metamodel (DPF) SUS (SMODL)

Figure 4.4: Isotypical and prototypical mapping between DPF SMODL metamodel and SMODL
service

Service, Doc, Method, Struct, Arg and Field have entities in the DPF
SMODL metamodel to provide the same functionality of entities as SMODL

CHAPTER 4. SOLUTION 47

service. It is a one to one correspondence between DPF SMODL metamodel
and SMODL service. So, its a Isotypical mapping. SimpleType can be used
to map built-in types string, int, long, float, double, bool, binary and date-
Time. So, its a one to many correspondence referred to as prototypical
mapping.

The figure 4.5 shows the relationship between SMODLmetmetamodel,
SMODLmetametamodelling language and SMODLmetamodel.

uses

DPF

SMODLMetamodelling

Language

DPF SMODL

Metametamodel

Class
DataType
Reference
Attribute

DPF SMODL

MetaModel

 *

*

*

*

isComposedOf 1

*

isComposedOf 1

*

Figure 4.5: Relation between SMODLmetametamodel and SMODL metamodel

SMODLmetamodel is a concrete metamodel to define any SMODL model
with all required constraint. SMODLmetamodelling language consists of
Service, Method, Doc, Struct, Arg, SimpleType to refer built-in datatype,
and references between nodes to show the morphisms. SMODLmetamodel
model unit kinds can be used to define the model unit of DPF SMODL
model and the figure 4.6 shows the relation between DPF SMODLmodel,
DPF SMODLmetamodel and DPF SMODLmetamodelling language.

4.1.3 Metamodelling hierarchy of SMODL

While modelling SMODL service, at the levelMn we defined SMODLmetameta-
model with the DPF modelling formalism and this model typed by the DPF
metamodel. In the next modelling level at Mn−1 DPF SMODL metamodel is
defined with SMODL metametamodel and this model conforms to and typed
by the DPF SMODL metametamodel. At each level we are defining the mod-
elling language and model which can be used as metamodel for the next
lower level modelling.

Figure 4.7 shows the multileveled modelling hierarchy of SMODL in DPF
Workbench and the modelling hierarchy of SMODL in traditional approach
from Mn−1 to Mn−3 .

CHAPTER 4. SOLUTION 48

uses

SMODL

MetamodellingLanguage

DPF SMODL

Model

* *

*

*

*

isComposedOf 1

*

isComposedOf 1

*

DPF SMODL

Metamodel

Service

Doc

Method

Struct
Arg

Filed

SimpleType
targetRef

methodRef

methodDoc
serviceDoc

strcutDoc

structRef
firstArg

nextArg

simpleResult
structResult

argStruct

argType
fieldRef

Figure 4.6: Relation between SMODLmetamodel and SMODL model

M n

M n-1

M n-2

M n-3

DPF SMODL

DPF metamodel language

SMODL metamodel

SMODL model

SMODL instance

Figure 4.7: Multileveled modelling hierarchy of SMODL service in DPF editor

CHAPTER 4. SOLUTION 49

4.2 Demonstration of SMODL modelling in DPF
workbench

This section demonstrate the modelling of a SMODL model in the DPF Work-
bench. We have defined a abstract SMODL metametamodel in DPF Work-
bench as shown in the figure 4.8.

• SMODL metametamodel consists of Class and DataType of type Node
and Attribute and Reference of type Arrow.

• Class can be used to define any type of the SMODL entities and Datatype
to define the attribute values of entities.

• References are used to define morphisms between Class types and
Attributes that defines what type of attributes a Class type can have.

Figure 4.8: SMODLmetametamodel of SMODL service in DPF Workbench

The DPF SMODL metamodel in the next lower level can be used to define
any SMODL model required for the implementation of SMODL web service.
For defining a concrete SMODL metamodel we need to apply the atomic
constraint in order to satisfy the constraints specified in the SMODL spec-
ification. In the DPF workbench multiplicity constraints has default value
[mult(0,*)]. The following list shows, what constrains are applied in mod-
elling of SMODL metamodel as shown in the figure 4.9.

• Service should have one targetnamespace, specified by [mult(1,1)].

• Service, method and struct can have zero or one doc element, arg
can have reference to zero or one of next arg to follow the ordered
of the arguments, these constraints are specified by the [mult(0,1)]
constraint.

• Service can have one or more methods specified by [mult(1,*)].

• result type of method and arg can be any one of simple data type or
can refer to name of the struct name, specified by the [XOR].

CHAPTER 4. SOLUTION 50

• A Struct can be extended to another struct but should not refer to
itself, specified by [irrf].

Relation between model unit kinds of DPF SMODL metamodel and DPF
SMODL metamodel as given below:

• Service, Doc, Method, Struct, Arg and SimpleType are of model unit
kind of Class.

• target is of model unit kind of DataType.

• serviceDoc, methodRef, methodDoc, structRef, extends, structResult,
simpleResult, firstArg, argStruct, argType, nextArg and structDoc are
of model unit kind of Reference.

• targetRefis of model unit kind of Attribute.

Figure 4.9: SMODLmetamodel of SMODL service in DPF Workbench

Finally we demonstrate the DPF SMODL model with a small example,
which is created by RUnit Software to provide the service of a user to login,
create or update and logoff their profile through the web service.

The figure 4.10 explains how SMODLmodel for a given example in list
2.2 is defined with SMODL metamodel and modelling languages and which
conforms to the DPF SMDOL metamodel

CHAPTER 4. SOLUTION 51

Figure 4.10: SMODLmodel of SMODL service in DPF Workbench

4.3 Bidirectional model transformation

The concrete DPF SMODL metamodel is defined in the DPF workbench.
Now, its possible to define a DPF SMODL models by using DPF SMODL
metamodelling language in similar way defined in the figure 4.10. But
DPF SMODL model need to be transformed to the SMODL XML for further
generation of SMODL service by RUnit Software. We also need to imple-
ment the reverse transformation from SMODL XML representation to DPF
SMODL model. Because it is more convenient to make changes to the model
in visual representation than in textual representation. More over the DPF
SMODL metamodel ensures whether model validates all constraints or not.

As mention in section 2.3, a transformation is the automatic generation
of a target model from a source model, according to a transformation def-
inition. A transformation definition is a set of transformation rules that
together describe how a model in the source language can be transformed
into a model in the target language. A transformation rule is a description
of how one or more constructs in the source language can be transformed
into one or more constructs in the target language. In order to specify the
transformation definition, we need to clarify some aspects related to trans-
formation:

• The primary artifacts of DPF are model, so we are performing a model

CHAPTER 4. SOLUTION 52

transformation. The DPF SMODL source model is defined with DPF
SMODL modelling language and the SMODL model in XML with the
Relax-NG Schema language. As source and target models of SMODL
are defined in different modelling languages, we used to create the
Heterogeneous transformation.

• The main characteristics of this SMODL model transformation are

– Fully automated.

– Complexity of the transformation is medium, as we are using
Code generator of DPF workbench tool as transformation engine,
Xpand languages for output generation and MWE for controlling
the execution of the workflow.

– The behaviour of the SMODL model is preserved even though
the source and target of SMODL models are defined in different
modelling languages.

4.3.1 Transformation rules for DPF SMODL to textual
SMODL model

The following rules are the transformation rules for transforming the DPF
SMODL model to a textual SMODL model:

• The target textual SMODL model is created from the DPF SMODL
source model by preserving the behaviour of the entities of SMODL
service.

• The define and expand blocks of the Xpand template defines the pat-
tern of which key elements of the source model are considered for the
transformation.

• The generated target SMODL model should conforms to the meta-
model defined in Relax-NG Schema.

• The transformed SMODL model should preserve the predefined entity
structure of the textual SMODL model. i.e. The root element is a
Service and is collection of:

– Zero or one doc element

– One or more method elements

– Zero or more struct elements

– Zero or more typedef elements

4.3.2 Transformation rules for textual SMODL to DPF
SMODL model

We are parsing textual SMODL XML models to DPF SMODL in diagram-
matic representation. For this we have chosen DOM parser for parsing the
XML document, which stores the document in a tree structure and provides

CHAPTER 4. SOLUTION 53

more functions to navigate in the tree elements of the document. Gen-
erating the source model from target model is a backward-looking model
representation. The transformation rules for textual SMODL model to DPF
SMODL model are as follows:

• The transforming generated DPF SMODL model should conform to its
DPF SMODLmetamodel.

• The model units of the transformed Source model should consists model
unit kinds of the DPF SMODL metamodel.

• The generated DPF SMODL model from the textual SMODL model
should be a valid instance of the DPF SMODLmetamodel, i.e. it is
satisfying all the atomic constraints.

4.4 Demonstration of the bidirectional model
transformation

In this section we are explaining, how we implemented the model transfor-
mation from DPF SMODL model to textual SMODL model and transforma-
tion of a textual SMODL model to the DPF SMODL model.

4.4.1 Model transformation from DPF SMODL to textual
SMODL

For implementing the model transformation from DPF SMODL to textual
SMODL model, we created a new project by following the same naming
convention as in DPF workbench tool. The project name is started with
no.hib.dpf.examples, because we are modelling and implementing model
transformation of a web service model as an example for model-driven ser-
vice development in the DPF workbench tool. The web service SMODL was
chosen as sub project. As shown in the figure 2.15 no.hib.dpf.example.smodl
project is created in Code generator wizard. Because model transformation
of diagrammatic to textual model in the DPF workbench is based on the
Code generator metamodel. The nature of the Code generator is the Xpand
framework project.

We need to specify the metamodel location in no.hib.dpf.codegen.xpand.ui.prefs
as shown in the list 4.1

eclipse.preferences.version=1
metamodel.location=platform:/resource/no.hib.dpf.examples.smodl

/specifications/SmodlMetaModel.xmi

Listing 4.1: SMODL Metamodel location in preferences

To run the Xpand template we have to define the workflow, which con-
trols the execution steps of the components.

CHAPTER 4. SOLUTION 54

Defining the workflow

In the workflow file first we defined the location of the metamodel and
model of the SMODL into the attributes of the properties in dpf_metamodel
and dpf_model, can be referred in the workflow components. The workflow
properties are:

• The location of the SMODL model is inserted in the value attribute by
the name dpf_model in the properties.

• The location of the SMODL metamodel is inserted in the value at-
tribute by the name dpf_metamodel in the properties.

The order of the components in the workflow are instantiation of the meta-
model, registering the DPF reader component and then generator compo-
nent. The generator component contains the Xpand Template information
that need to expand against the instantiated metamodel and saved in the
value of modelSlot in DPF reader component.

The given list of code in 4.2 gives the details how the MWE controls the
workflow execution

<?xml version="1.0" encoding="UTF-8" standalone="no"?><workflow>
<!-- workflow properties -->
<property name="dpf_model" value="platform:/resource
/no.hib.dpf.examples.smodl/specifications/RepositoryService.xmi"/>
<property name="dpf_metamodel" value="platform:/resource
/no.hib.dpf.examples.smodl/specifications/SmodlMetaModel.xmi"/>

<property name="src-gen" value="src-gen"/>

<!-- set up EMF, only needed when using URI’s -->
<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">

<platformUri value=".."/>
</bean>

<!-- instantiate metamodel-->
<bean class="no.hib.dpf.codegen.xpand.metamodel.DpfMetamodel" id="mm_dpf"/>

<!-- DPF component -->
<component class="no.hib.dpf.codegen.xpand.metamodel.workflow.DpfReader">

<dpfMetaModel value="${dpf_metamodel}"/>
<dpfModel value="${dpf_model}"/>

<metaModel idRef="mm_dpf"/>
<modelSlot value="dpf"/>

</component>

<!-- generate code -->
<component class="org.eclipse.xpand2.Generator">

<metaModel idRef="mm_dpf"/>
<expand value="template::Smodl::main FOR dpf"/>

CHAPTER 4. SOLUTION 55

<outlet path="${src-gen}">
<postprocessor class="org.eclipse.xtend.typesystem.xsd.XMLBeautifier">

<maxLineWidth value="120" />
<formatComments value="true" />
<fileExtensions value=".xml"/>

</postprocessor>
</outlet>

</component>
</workflow>

Listing 4.2: SMODL Workflow

Defining the Xpand template

We are using the Xpand template for generating the textual SMODL model.
The template defines the format of the textual SMODL model in XML. We
use Xtend to define extensions as sub routines, recursive extensions reduces
the repeated complexity of the template and increase the reusability of the
extension.

• At the start of the template we imported the namespace DPF, which is
a name of the modelslot.

• And extension import to import smodlWrapper as name of the exten-
sions file.

• We defined main as a definition for DPF specification, which contains
the specification of metamodel. The root element of the Specification
is Graph. So graph is expanded inside the main.

• The root element of the target SMODL model is Service. From graph
we defined and expanded the Service element for doc, method and
struct.

• The method blocks are defined and expanded for the method argu-
ments and for the result of the method. The method arguments should
be in the sequence order, for this we defined the extensions.

• We defined struct block and expanded for the fields.

The given list 4.3 shows the code for Smodl Xpand template

«IMPORT dpf»

«EXTENSION org::eclipse::xtend::util::stdlib::io»
«EXTENSION template::smodlWrapper»

«DEFINE main FOR dpf::Specification»
«EXPAND graph FOR this.graph»

«ENDDEFINE»

«DEFINE graph FOR dpf::Graph»
«EXPAND service FOREACH this.getServices()»

CHAPTER 4. SOLUTION 56

«ENDDEFINE»

«DEFINE service FOR dpf::Service»
«FILE this.name+".xml"»
<?xml version="1.0" encoding="UTF-8"?>
<service name=«setQuotes(this.name)»
xmlns=«setQuotes(this.getATargetRefs().first().target.name)»>

«EXPAND servicedoc FOREACH this.getAServiceDocs()»
«EXPAND methodref FOREACH this.getAMethodRefs()»
«EXPAND struct FOREACH this.getAStructRefs()»
</service>
«ENDFILE»
«syserr(this.name)»

«ENDDEFINE»

«DEFINE servicedoc FOR dpf::serviceDoc»
<doc>«this.target.name»</doc>

«ENDDEFINE»

«DEFINE methodref FOR dpf::methodRef»
<method name=«setQuotes(this.target.name)»>
«EXPAND methodDoc FOREACH this.target.getAMethodDocs()»
«EXPAND firstargref FOREACH this.target.getAFirstArgs()»
<result type=«setQuotes((setMethodResult(this.target)))»/>
</method>

«ENDDEFINE»

«DEFINE methodDoc FOR dpf::methodDoc»
<doc>«this.target.name»</doc>

«ENDDEFINE»

«DEFINE firstargref FOR dpf::firstArg»
<arg type=«setQuotes(setArgType(this.target))»

name=«setQuotes(this.target.name)»/>
«EXPAND nextArg FOREACH this.target.getANextArgs()»

«ENDDEFINE»

«DEFINE nextArg FOR dpf::nextArg»
«nextArgRecursion(this)»
«REM»«setNextArg(this)»
<arg name= «setQuotes(this.target.name)»
type=«setQuotes(setArgType(this.target))»/>«ENDREM»

«ENDDEFINE»

«DEFINE struct FOR dpf::structRef»

<struct name=«setQuotes(this.target.name)»>
«EXPAND structDoc FOREACH this.target.getAStructDocs()»

CHAPTER 4. SOLUTION 57

«EXPAND field FOREACH this.target.getAFieldRefs()»
</struct>

«ENDDEFINE»

«DEFINE structDoc FOR dpf::structDoc»
<doc>«this.target.name»</doc>

«ENDDEFINE»

«DEFINE field FOR dpf::fieldRef»
<field type=«setQuotes(this.target.name)»
name=«setQuotes(this.name)» />

«ENDDEFINE»

Listing 4.3: SMODL template

Creating Xtend extensions

The smodlWrapper is created to include extensions required for creating
the XPand templates. The advantage of the Xtend extensions are type infer-
ence and we can define recursive extension.

In SMODL XML-dialect, attributes values should be enclosed in double
quotes. While defining the template instead of adding the double quotes
every time while assigning values to the element attributes of SMODL, we
defined the extension as shown in (1) of list 4.4

For setting the built-in type or name of the struct for the type of the
argument in a method, we defined the extension as shown in (2) of list 4.4.

The arguments should be in order as defined in the method signature,
they should be in sequence order. For this we defined a recursive exten-
sion, which checks recursively whether expanded method have any more
arguments for that method signature. The lines of code in (3) 4.4 shows the
recursive extension.

Methods should have one result. To define the result type of the method,
we defined the extension as shown in (4) of list 4.4. This extension will
check whether the result type is a bulit-in datatype of a name of the struct
type.

(1) setQuotes(String strName):
"\""+strName+"\"";

(2) setArgType(dpf::Arg this):
this.getAArgStructs().size>0
?this.getAArgStructs().first().target.name:
(this.getAArgTypes().size>0
?this.getAArgTypes().first().target.name:"");

(3) String nextArgRecursion(dpf::nextArg this):
this.target.getANextArgs().size>0 ?

CHAPTER 4. SOLUTION 58

setNextArg(this)+" "+nextArgRecursion
(this.target.getANextArgs().first()):
setNextArg(this) ;

(4) setMethodResult(dpf::Method this):
this.getAStructResults().size>0?
this.getAStructResults().first().target.name:
(this.getASimpleResults().size>0?
this.getASimpleResults().first().target.name:"");

Listing 4.4: SMODL Xtend extensions

4.4.2 Model transformation from textual SMODL to DPF
SMODL

We created a plug-in project for the model transformation from the tex-
tual SMODL model to the DPF SMODL model. The given name of the
project is no.hib.dpf.examples.smodl.transformation. The packages starts
with no.hib.dpf.examples denotes its under examples of DPF project for im-
plementing the model-driven service development. The sub-project name
smodl.transformation denotes its implementation project for textual to model
transformation. The following dependencies are added to the project:

• org.eclipse.jdt.core

• org.eclipse.core.resources

• org.eclipse.core.expressions

• no.hib.dpf.core

• no.hib.dpf.diagram

• org.eclipse.emf.ecore.xmi

In the plug-in properties file we changed singleton to true to allow for
the creation of the extension as shown in (1) of list 4.5.

We added the extensions points for org.eclipse.ui.menus and org.eclipse.ui.commands
in the plugin.xml. The lines of code shows of (2) in list 4.5 shows how to call
the model transform plugin on the selection of .xml file.

(1) Bundle-SymbolicName:
no.hib.dpf.examples.smodl.transformation;singleton:=true

(2) <extension
point="org.eclipse.ui.menus">
<menuContribution

locationURI="popup:org.eclipse.jdt.ui.PackageExplorer" >
<command

commandId="model.parser" label="Model To Model" style="push" >

<visibleWhen

CHAPTER 4. SOLUTION 59

checkEnabled="false">
<with

variable="activeMenuSelection">
<iterate ifEmpty="false" operator="or">
<adapt

type="org.eclipse.core.resources.IFile">
</adapt>
</iterate>

</with>
</visibleWhen>

</command>
</menuContribution>

</extension>

Listing 4.5: Model to Model menu extension

The command id for this extension is model.parser. The label appears
on the selection of .xml file is Model To Model, here actually we are per-
forming the text to model transformation, but the name given to the label
as Model To Model is to mention both are model converting from textual
SMODL model to DPF SMODL model. And the default handler for this
is no.hib.dpf.m2m.transformation.SmodltoDPFTransformation, this class is
the handler to take the action on selecting the label Model To Model on a
.xml file. If the selected file is not .xml then a message dialogue will popup
with message Please select a SMODL xml file. If we select a SMODL.xml file
its creates the SMODL.dpf and SMDL.xmi files. Manually we need to store
the location of the DPF SMODL metamodel in the variable META_DIAGRAM_FILE
as shown in (1) of list 4.6.

NOTE:Assigning location of the metamodel should be changed in
further development

The generated DPF SMODL model should conform to the DPF SMODL-
metamodel. To obtain that first we are loading the resource set with the
SMODLmetamodel for getting the type graph. And then creating a new
specification for generating the source SMODL model. The new specifica-
tion type graph will be filled with the graph of SMODL metamodel specifi-
cation as shown in (2) of list 4.6.

The function call XmlParser.SmodlXMLParser(file) parses the XML docu-
ment and stores the internal structure as a tree in memory. The summarized
details for implementing the textual SMODL model to DPF SMODL model
are given below:

• The root element of the document is Service.

• First get the root element Service and then get the attribute name and
value of it as shown in (3) of list 4.6.

• For visualization of nodes we are starting from point(10,200) as the
starting point of the location to place the nodes in the diagrammatic

CHAPTER 4. SOLUTION 60

editor specification. Changing the location according to the type of
the nodes.

NOTE for further development: Location of the Nodes to the
specification should be added dynamically

• For adding the content of a Service to the specification, we need to
check whether the Service type is exists in DPF SMODL metamodel.

• If it exists in the metamodel, then the attribute name and the value of
it will be added to the graph of the source SMODL specification.

• Iterate through the child elements of the Service, and then first add
the child element details of Struct to the specification if it exist. Be-
cause method results and argument type may refer to the name of the
Struct and then add the child elements Method.

• Once Struct or Method element is added to the graph, then immedi-
ately we are adding particular element’s child elements to the graph
of the specification as shown in (4) of list 4.6.

• Every time when adding the specification graph nodes, we are check-
ing whether that particular elements name exists in the type graph or
not as shown in (5) of 4.6.

• For adding arrows to show the association between two nodes in the
graph, we are taking into consideration of two document elements
names and checking with the type graph arrow’s source and target
name by iterating the arrows list. Once if it matches, then we are
adding the arrow of that particular typearrow to the specification graph
as shown in (6) of list 4.6.

(1) META_DIAGRAM_FILE =
"D:\\runtime-EclipseApplication\\no.hib.dpf.examples.smodl
\\specifications\\SmodlMetaModel.dpf";

(2) public static void dpfFileTempleteToGenerate(String dpfFile, IFile file){
ResourceSetImpl resourceSet = DPFDiagramUtil.getResourceSet();
newSpec = DPFDiagramUtil.loadSpecWithMetaModel(resourceSet);
DPFDiagramUtil.loadSMODLModel(resourceSet,newSpec,dpfFile,file);
XmlParser.SmodlXMLParser(file);
DPFDiagramUtil.saveDSpecification(resourceSet,dpfFile);

}

(3) DPFTemplates.SpecificationContent(nNode.getNodeName(),
getNodeValue(nNode,"name"),null,null,p.getCopy());

(4) public static void getMethodAndStructdetails
(String childName, Node nNode,Point p){

NodeList nServiceChildNodes = nNode.getChildNodes();
Point nextMethodOrStruct = new Point(p);
for(int count=0; count<nServiceChildNodes.getLength(); count++){

Node nServiceChild = nServiceChildNodes.item(count);

if(nServiceChild.getNodeType() == Node.ELEMENT_NODE) {

CHAPTER 4. SOLUTION 61

if(nServiceChild.getNodeName().equalsIgnoreCase(childName)){

DPFTemplates.SpecificationContent(nServiceChild.getNodeName(),
getNodeValue(nServiceChild,"name"),
nNode.getNodeName(), getNodeValue(nNode,"name"),
p.getCopy());

getChildNodes(nServiceChild,p);
p.setLocation(nextMethodOrStruct);
p.translate(0, 100);
nextMethodOrStruct.setLocation(p);

}
}

}
}

(5) DNode node = DiagramFactory.eINSTANCE.createDefaultDNode();
for(DNode typeNode : newSpec.getDType().getDGraph().getDNodes()){

if(targetnodeName.equalsIgnoreCase(typeNode.getName().toString())){
node.setDType(typeNode);
node.getNode().setName(targetnodeValue);
node.setLocation(p);
if(targetnodeName.equalsIgnoreCase("SimpleType")

||targetnodeName.equalsIgnoreCase("Struct")){
for(DNode existNode:newSpec.getDGraph().getDNodes()){
if(targetnodeValue.equalsIgnoreCase(existNode.getName().toString())){

existNodeInGrp = true;
node = existNode;
break;
}
}
}
if(!existNodeInGrp)
newSpec.getDGraph().addDNode(node);
break;
}
}

(6) if(sourceNodeName!= null){
DArrow arrow = DiagramFactory.eINSTANCE.createDefaultDArrow();
for(DArrow typeArrow :newSpec.getDType().getDGraph().getDArrows()){
if(typeArrow.getDSource().getName().equalsIgnoreCase(sourceNodeName) &&

typeArrow.getDTarget().getName().equalsIgnoreCase(targetnodeName)){
arrow.setDType(typeArrow);
arrow.getArrow().setName(targetnodeValue);
arrow.setDTarget(node);

for(DNode sourceNode:newSpec.getDGraph().getDNodes()){
if(sourceNodeValue.equalsIgnoreCase(sourceNode.getName().toString())){

arrow.setDSource(sourceNode);

CHAPTER 4. SOLUTION 62

}
}
newSpec.getDGraph().addDArrow(arrow);
break;
}

}
}

Listing 4.6: Code for SMODL Model to DPF SMODL Model transformation

Finally when all the elements of the XML documents are added to the
specification of the SMODL model. We check that the DPF SMODL model is
a instance of the DPF SMODL metamodel by satisfying the all atomic con-
straint. If the XML document is not correct then we can easily identify the
error in diagrammatic specification editor with error message for violated
constraints. Invoking of textual model to diagram model by selecting on
repositoryservice.xml on execution of model transformation plugin project
is shown in figure 4.11.

The repositoryservice.dpf and repositoryservice.xmi files are generated
in the same source folder for the corresponding repositoryservice.xml doc-
ument. The location of the nodes are placed by calculating the location
positions. Graphical representation is not clear as shown in the figure 4.12,
it need to be improved to present in nicer way.

CHAPTER 4. SOLUTION 63

Figure 4.11: Model transformation from textual SMODL to DPF SMODL

CHAPTER 4. SOLUTION 64

Figure 4.12: Generated DPF SMODL from SMODL XML-dialect

Chapter 5

Evaluation and Conclusion

5.1 Evaluation

This section shows the comparison of modelling and model transformation
of SMODL service by use of DPF technologies with traditional approach by
using the Smodl Development Suite (SDS)[30].

5.1.1 Traditional approach

We start by describing SDS, it automatically generates the code for web ser-
vices from Smodl models. SMODL model is used to automatically generate
the java classes. Further Java classes are used for the generation of web
services. Some major characteristics of the SDS approach are:

• SMODL model is defined with the Relax-NG schema language, which
is similar to XML.

• The generated SMODL model from the Relax-NG schema language is
a XML document.

• SDS uses a textual representation of the modelling language and mod-
els are as represented in lists 2.1 and in list 2.2.

• To be able to use SDS approach the developer should have knowledge
about the Relax-NG schema language and also XML.

• Its difficult to find errors in textual representation of of SMODL model.

• SDS will not show any error message, if any constraint is violated

• Modelling in SDS is following a 2-layerd metamodelling hierarchy, it
doesn’t support a multi layered metamodelling hierarchy. Figure 5.1
gives the overview of the metamodelling in the SDS approach

• SDS supports model transformation from SMODL model to Java code
and reverse transformation from java code to XML SMODL model,
again its a tedious work to find out the errors in XML SMODL as it
is textual representation.

65

CHAPTER 5. EVALUATION AND CONCLUSION 66

 SMODL metamodel

SMODL model

Relax-NG schema

language

 XML

 Instance of

 Specified by

Valid

instance of

Figure 5.1: SMODL modelling hierarchy

5.1.2 Formal approach in DPF

DPF provides multilayered metamodelling hierarchy. In this thesis the for-
malisation of SMODL service with metamodelling and model transformation
by using, adapting and extending the DPF Workbench tool. In chapter 4 we
showed how we can define metamodelling and model transformations for
SMODL service with formal approach. In the thesis, it has been proved that
DPF can be used for model-driven service development by the formalisation
of SMODL model. The summarised modelling details of DPF SMODL in the
DPF Workbench tool are as follows:

• The representation of SMODL model in the DPF workbench is defined
by a 4-layered metamodelling hierarchy from Mn toMn−3 as shown in
figure 4.7.

• Relatively it is easy for the developer to use thr DPF modelling lan-
guage. Because the DPF metamodelling language consists of only
Node and Arrow as model unit kinds.

• The DPF workbench tool provides a signature editor, in which devel-
opers can define their own customised predicates such as [XOR4] for
SMODL model as shown in figure 2.13.

• The DPF SMODL model is specified with DPF SMODL metamodelling
language in, DPF SMODL model conforms to metamodel by satisfying
all the atomic constraints. The DPF workbench tool shows if there is
any constraint violation automatically. This do not required to check
the constraints manually.

• In DPF workbench tool we defined the abstract SMODL metamodel
from which we can define any SMODL model required for the imple-
mentation of web services.

• The bidirectional model transformation of SMODL in the DPF work-
bench is fully automated for transformation from a DPF SMODL model
to a textual SMODL model and reverse transformation from a textual
SMODL model to a DPF SMODL model.

• During the transformation of a DPF SMODL to a textual SMODL model,

CHAPTER 5. EVALUATION AND CONCLUSION 67

the developer required to specify the location of the model and meta-
model of SMODL.

• A well formed source DPF SMODL model is transformed to a textual
SMODL model with transformation definition. We can ensure that
the target SMODL model is also well formed and a valid instance of
SMODL metamodel defined with Relax-NG schema language.

• We defined the reverse transformation from a textual SMODL model
to a DPF SMODL model with a set transformation rules. So, the gen-
erated source DPF SMODL model is a valid instance of DPF SMODL
metamodel. If there is any constraint is violated, DPF workbench tool
shows which constraint is violated and gives error message. The de-
veloper can easily find out the errors in the generated DPF SMODL
model in DPF workbench tool.

• The developers need some training to use DPF Workbench tool to get
knowledge about modelling language and predicate semantics, even
though their visualization represents their semantics in the default
signature editor.

• We can conclude a model can be transformed from DPF SMODL to
textual SMODL and again to DPF SMODL model as a valid instance.

• Finally, we have proved that DPF workbench tool can be used for
model-driven service development by given a formalisation of the SMODL
SDS with use of metamodelling and model transformation.

5.2 Conclusion

This section provides an overview of this thesis. How we have used meta-
modelling and model transformation to represent SDS SMODL model for
generating code for the implementation of a web service in DPF Workbench
tool. Though this thesis, we can conclude that the DPF work bench tool
can be used for model-driven service development by the formalisation of
a services such as SMODL service. We also proposes some further actions
need to be taken in the direction of model-driven service development.

5.2.1 Summary

In this section we summarize, how we defined the modelling and achieved
the bidirectional transformation between models SDS SMODL to DPF SMODL
by extending the DPF workbench tool. We can define the metmodelling of
SMODL service with modelling language types Node and Arrow in diagram-
matic editor of DPF workbench tool. Using the Code generator tool, we can
able to develop a tool to perform transformation of DPF SMODL model to
textual SMODL model by using the Code generator as a transformation en-
gine. We have also developed a pugin tool as sub-project of DPF workbench
tool for transformation of textual SMODL model to diagrammatic SMODL
model.

CHAPTER 5. EVALUATION AND CONCLUSION 68

Through this thesis we achieved the following:

Modelling of SMODL
Metamodelling of SMODL in the DPF workbench is of concept for
defining formal modelling of web services. Its a case study for model-
driven service development. Following this approach we can a de-
fine a abstract metamodel for any specific domain and then continue
to refine the model, until one can able to create the real object of
the model. In the DPF workbench we defined the metamodelling for
SMODL in 4-layered hierarchy as shown in figure 4.7. We defined
a SMODL metametamodel at higher level of abstraction, which only
consists of Class and DataType of Type Node and Reference and At-
tribute of type Arrow. This DPF SMODL metametamodel is a abstract
model to define modelling of any web service. At each level of the mod-
elling hierarchy, we are defining modelling language and a model for
SMODL. In the next lower level of modelling hierarchy we defined the
DPF SMODL metamodel which conforms to the SMODL metameta-
model and specified by DPF SMODL metametamodelling languages.
DPF SMODL metamodel is a generalised metamodel to define any DPF
SMDOL model for further development of web service by SDS. By this
formal approach we can a define modelling in a multi layered meta-
modelling hierarchy for a services.

Model transformation from DPF SMODL to textual SMODL model
In this thesis, we can conclude that, the DPF Workbench can used for
model transformation of web services.We created a project no.hib.dpf.examples.smodl
for model transformation of DPF SMODL model to textual SMODL
model. This project generates a well formed target SMODL model
with the well defined transformation rules in transformation definition
as shown in the subsection 4.3.1 and we have used DPF’s code gen-
erator as transformation engine. We created the project in the Code
generator wizard which was build on the Xpand framework. We used
XPand textual languages to create a template and defined the well
formed structure for generating target SMODL model. We have used
extensions to define the routines required for generating well formed
XML SMODL. We used MWE for controlling the execution of compo-
nents.

Model transformation from textual SMODL to DPF SMODL model
We have developed a plugin project as a sub-project under DPF work-
bench tool. This project proves, we are able to perform the trans-
formation from textual SMODL model to diagrammatic DPF SMODL
model. We implemented this solution with a set of transformation rules
in transformation definition. XML Dom parser for parsing the XML
SMODL. By parsing the XML SMODL tree structure we created a .dpf
and .xmi specification files for the DPF SMODL model. We calculated
positions to locate nodes on the diagrammatic specification editor for
the visualization representation of the specification. This project gen-

CHAPTER 5. EVALUATION AND CONCLUSION 69

erates a DPF SMODL model, which is a valid instance of DPF SMODL
metamodel by satisfying the all atomic constraints. Bu using this solu-
tion we get an an easier way for detecting the error in a XML SMODL
by transforming into a DPF SMODL model in diagrammatic specifica-
tion and using the DPF workbench for conformance check.

We can concluded this thesis formalises a web service SMODL by defin-
ing metamodelling and bidirectional model transformation in the DPF work-
bench tool, which are key concepts of Model driven development. Finally,
we can say DPF workbench tool provides the formalisation web services.

5.3 Further actions need to be taken

In this section, we propose the some further work in modelling and model
transformation for SMODL service in the DPF Workbench tool. We also
suggestion some further actions need to be taken in the direction of model-
driven service development.

5.3.1 Modelling and model transformation of SMODL

While modelling SMODL model in the DPF workbench tool, we haven’t de-
fined all the constraints required for modelling of SMODL. The solution need
to be improved with all required constraints.

While implementing model transformation from DPF SMODL model to
textual SMDOL model, we haven’t implemented the typedef and array type
of SMODL service. Because at the time of implementing this solution, Code
generation tool was not supporting the Xpand types for predicates defined
in the DPF SMODL metamodel specification. It has to be implemented in
the future, when Code Generation tool supports Xpand types for predicates.

5.3.2 Code Generation

Code Generation in DPF workbench tool is a key tool for model transfor-
mations. Without code generation tool its not possible to perform model
transformation from diagrammatic model to textual model. Code genera-
tion provides the support by transforming DPF modelling types to Xpand
types. Using the Xpand types we can create the code generation templates
for generating the output. But shortage in the Code generation tool is it
does not provides the support to get the constraint details of the predicates
defined between nodes or on arrow labels. It is not possible without the con-
straint types to satisfy all requirements needed for model transformation in
model driven development. The Code generation tool need to be improved
to implementation of model-driven service development in the DPF Work-
bench tool.

CHAPTER 5. EVALUATION AND CONCLUSION 70

5.3.3 Graphical representation of diagrams in DPF work-
bench tool

In the DPF workbench tool, DPF metamodel is more convenient for mod-
elling with Node and Arrow. Developers requires no training to do mod-
elling with Node and Arrow. But if we refer to the figure 4.10 the presen-
tation of the specification is so messy with many nodes and arrows for a
small XML as shown in the list 2.2. The diagrammatic representation of
the transformed DPF SMODL model from XML SMODL should be refined to
place the nodes in the diagrammatic editor in nicer view. Model transfor-
mation from textual SMODL to DPF SMODL was not providing the optimal
solution for calculating positions to locate nodes in editor. The visualization
of diagrams in the DPF workbench tool could be nicer if classes and their
attributes are in single diagram representation.So, we propose to change
the concrete graphical representation of the models in nicer view of presen-
tation to allow customisable visualization in the DPF Workbench tool.

Bibliography

[1] Øyvind Bech. DPF Editor – A Multi-Layer Modelling Environment for
Diagram Predicate Framework in Eclipse. Master’s thesis, Department
of Informatics, University of Bergen, Norway, May 2011.

[2] Kent Beck and Cynthia Andres. Extreme Programming Explained: Em-
brace Change (2nd Edition). Addison-Wesley Professional, 2004.

[3] Michael Bell. Service-oriented modeling:service analysis, design, and
architecture. Wiley, 2008.

[4] Robert C.Martin. Agile Software Development principles, patterns and
practices. Pearson, 2012.

[5] Zinovy Diskin and Boris Kadish. Variable set semantics for keyed gen-
eralized sketches: formal semantics for object identity and abstract
syntax for conceptual modeling. Data Knowl. Eng., 47(1):1–59, 2003.

[6] DPF: Diagram Predicate Framework. Project Web Site. http://dpf.
hib.no/.

[7] Eclipse M2T Project. Project Web Site. http://www.eclipse.org/
modeling/m2t/.

[8] Eclipse Modeling Framework Technology. Project Web Site. http:
//www.eclipse.org/modeling/emft.

[9] Eclipse Naming Conventions. Project Web Site. http://wiki.
eclipse.org/Naming_Conventions.

[10] Eclipse Platform. Project Web Site. http://www.eclipse.org.

[11] Eclipse Xtend. Project Web Site. http://www.eclipse.org/xtend/
documentation.html.

[12] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation . Springer, 2006.

[13] Dragan Gašević, Dragan Djurić, and Vladan Devedžić. Model driven
engineering. Springer, 2009.

[14] Cesar Gonzalez-perez and Brain Henderson-Sellers. Metamodelling for
Software Engineering. Wiley, 2008.

71

http://dpf.hib.no/
http://dpf.hib.no/
http://www.eclipse.org/modeling/m2t/
http://www.eclipse.org/modeling/m2t/
http://www.eclipse.org/modeling/emft
http://www.eclipse.org/modeling/emft
http://wiki.eclipse.org/Naming_Conventions
http://wiki.eclipse.org/Naming_Conventions
http://www.eclipse.org
http://www.eclipse.org/xtend/documentation.html
http://www.eclipse.org/xtend/documentation.html

BIBLIOGRAPHY 72

[15] Cesar Gonzalez-Perez and Brian Henderson-Sellers. Modelling soft-
ware development methodologies:A conceptual foundation. Journal of
Systems and Softwares, 2007.

[16] Pieter Van Gorp, Tom Mens, and Krzysztof Czarnecki. A Taxonomy of
Model Transformations, 2005.

[17] Ørjan Hatland. Sketcher .NET – A drawing tool for generalized
sketches. Master’s thesis, Department of Informatics, University of
Bergen, Norway, June 2006.

[18] Itemis. Company Web Site. http://www.itemis.com.

[19] Nicolai M. Josuttis. SOA in practice:the art of distributed system de-
sign. O’Reilly, 2011.

[20] Kaisler and Stephen H. Software Paradigms. Wiley, 2005.

[21] Steven Kelly and Juha-Pekka Tolvanen. Domain-specific model-
ing:enabling full code generation. Wiley, 2008.

[22] Yngve Lamo and Adrian Rutle. A metamodel approach to model driven
service development, 2012.

[23] Yngve Lamo, Xiaoliang Wang, Florian Mantz, Wendy MacCaull, and
Adrian Rutle. DPF Workbench: A Diagrammatic Multi-Layer Domain
Specific (Meta-)Modelling Environment . In Studies in Computational
Intelligence. Springer, 2012.

[24] Object Management Group. Web site. http://www.omg.org.

[25] Object Management Group. Meta-Object Facility Specification, Jan-
uary 2006. http://www.omg.org/cgi-bin/doc?formal/2006-01-01.

[26] Object Management Group. Unified Modeling Language Specification,
May 2010. http://www.omg.org/spec/UML/2.3/.

[27] Object Management Group. Unified Modeling Language Specification,
May 2010. http://www.omg.org/spec/UML/2.3/.

[28] openarchitectureware. Company Web Site. http://www.
openarchitectureware.org.

[29] RUnit Software. SMODL – Formal Specification. http://www.smodl.
org/smodl-formal-specification.html.

[30] RUnit Software. SMODL – Simple MethOd Declaration Language.
http://www.smodl.org/.

[31] Adrian Rutle. Diagram Predicate Framework: A Formal Approach
to MDE. PhD dissertation, Department of Informatics, University of
Bergen, Norway, 2010.

http://www.itemis.com
http://www.omg.org
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/UML/2.3/
http://www.openarchitectureware.org
http://www.openarchitectureware.org
http://www.smodl.org/smodl-formal-specification.html
http://www.smodl.org/smodl-formal-specification.html
http://www.smodl.org/

BIBLIOGRAPHY 73

[32] Anders Sandven. Metamodel based Code Generation in DPF Editor.
Master’s thesis, Department of Informatics, University of Bergen, De-
partment of Computing, Mathematics and Physics Bergen University
College, Norway, March 2012.

[33] Donald Sannella and Andrzej Tarlecki. Foundation of Algebraic Specif-
cation and Formal Software Development. Springer, 2012.

[34] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer,
2006.

[35] Ida Solheim and Ketil Stølen. Technology research explained. Techni-
cal Report A313, SINTEF ICT, Oslo, Norway, March 2007.

[36] Gary Thomas. A Typology for the Case Study in Social Science Fol-
lowing a Review of Definition, Discourse, and Structure. Qualitative
Inquiry, 2011.

[37] Michal Walicki. Introduction To Mathematical Logic. World Scientific,
2011.

[38] Wikipedia. Modeling languages.

[39] Uwe Wolter. Category Theory and Diagrammatic modelling, 2011.

[40] XML. Project Web Site. http://www.w3schools.com/xml.

[41] Xpand. Project Web Site. http://wiki.eclipse.org/Xpand.

http://www.w3schools.com/xml
http://wiki.eclipse.org/Xpand

	List of Figures
	Preface
	1 Introduction
	1.1 Motivation
	1.2 Structure of Thesis

	2 Background
	2.1 Model Driven Engineering
	2.2 Metamodelling
	2.3 Model Transformation
	2.4 Service Oriented Architecture (SOA)
	2.5 Service oriented modelling (SOM)
	2.6 SMODL development suite for Web services
	2.7 Diagram Predicate Framework
	2.8 DPF Workbench
	2.9 Metamodel based Code Generation

	3 Problem and requirement analysis
	3.1 Problem Anlysis
	3.2 Development Process
	3.3 Xpand Framework
	3.4 eXtensible Markup Language (XML)

	4 Solution
	4.1 Defining models and modelling languages for SMODL web Services in the DPF Workbench
	4.2 Demonstration of SMODL modelling in DPF workbench
	4.3 Bidirectional model transformation
	4.4 Demonstration of the bidirectional model transformation

	5 Evaluation and Conclusion
	5.1 Evaluation
	5.2 Conclusion
	5.3 Further actions need to be taken

	Bibliography

