A Metamodel Approach to Model Driven Service Development

Yngve Lamo1, Adrian Rutle2

1Faculty of Engineering, Bergen University College, Norway

2St. Francis Xavier University, Canada

4 May 2012
AWOSS 2012, Halifax, Canada
Outline

Introduction and Motivation

Model Driven Service Generation

Summary and Future Work
• Name: Yngve Lamo
• Bergen University College, Norway
• James Chair, visiting professor at St. FX University, Antigonish, Canada
• Background in formal methods
• Currently working on foundations of model driven software engineering
Introduction

- Norwegian economy is based on:
 - Natural resources, oil and gas, fishing (fish farming), hydro electric power, ...
 - Shipping: an important industry with long traditions in Norway
- Norwegian oil and gas production
 - Offshore production in heavy weather conditions
 - Supply and service industry: mainly done by Norwegian companies
- Safety is highly important
 - Need for training to handle extreme conditions
 - Use of offshore training simulators
Training simulators

• Offshore Simulator Centre (OSC): a Norwegian company which:
 • Delivers offshore simulators
 • Develops training concepts
 • Aims to increase safety for personnel involved in demanding offshore operations
 • See http://offsim.no

• MUMS project
 • Model Driven Development of Maritime Simulators
 • Incubation project founded by the Research Council of Norway
 • Cooperation between industry (OSC, RUnit), and University Colleges (HiALS, HiB)
Anchor handling

- The process of placing oil rigs in its right position
- Considered the most dangerous offshore operation
Problem Description

• Offshore simulators should be as realistic as possible, i.e. the crew should get the feeling of working on their own boat
• If a minor detail on a ship is changed the behavior of the ship may be completely different and
• The simulator code needs to be reimplemented
 • Repeated coding of low level details
 • Need to do language specific development (float, int, . . .)
• Our proposal is to use model driven engineering combined with service orientation to tackle the problem
Solution

1. Design domain specific language for the maritime domain
 - Simulator developers can work with domain concepts instead of programming language concepts

2. Components as services:
 - Loose coupling between components
 - Isolate components in specific services
 - SMODL language http://smodl.org, language for model driven development of services

3. Code generation
 - Automate the development of simulator code
 - Challenge to automate code for physical behavior of the ship
 - Especially for the differential equation solvers
Outline

Introduction and Motivation

Model Driven Service Generation

Summary and Future Work
DSML and Metamodels

- Domain Specific (modelling) Languages (DSMLs) are (modelling) languages made for a specific domain
- DSMLs are specified by metamodels:
 - The domain specific types
 - Domain specific constraints that the models need to fulfill
- Diagram Predicate Framework (DPF) is a formal diagrammatic approach to MDE, http://dpf.hib.no
- DPF is used to construct a modeling hierarchy for part of the offshore domain
DSML for propulsor system
Approach
Deafult metamodel \mathcal{G}_3 in DPF

- DPF’s default metamodel \mathcal{G}_3 consisting of \textit{Node} and \textit{Arrow}
Propulsor metamodel \mathcal{S}_2 typed by \mathcal{S}_3
Propulsor model S_1 typed by S_2
Service model transformed from \mathcal{S}_1
Outline

Introduction and Motivation

Model Driven Service Generation

Summary and Future Work
Summary and Future Work

- We have presented a metamodel approach to model driven service development for an offshore simulator.
- The flow of this process is:
 1. Construct a DPF modelling hierarchy for the offshore domain.
 2. Transform domain models to internal DPF-SMODL models.
 3. Transform DPF-SMODL models to SMODL models.
 4. Generate services from the SMODL models.
 5. Run the services in the simulator.
- In the future we will:
 - Construct a complete DSML for the offshore simulation domain.
 - Automate services generation from domain specific models.
 - A major challenge will be to model and generate software for physical behavior (wind, sea, ...).
 - Improve the visual syntax of the model editor.
Thanks for your attention

Questions?