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Chapter 1

Introduction

This thesis is part of an ongoing project at Bergen University College and the
University of Bergen started in early 2006, called Diagram Predicate Framework
(DPF). Covered here is the design, construction and evaluation of a model
(specification) editor for the Eclipse platform, based on DPF.

1.1 Motivation

In modern life, models are ubiquitous. Architects and designers visualize build-
ings and building projects by use of models, engineers model construction projects
as a matter of routine. The goal of all this activity is often to get to grips with
complex subject matter through abstraction: simplification and concretization
of some desired aspects of a system under study in a specific domain. This
process of abstraction – removing details from a system and considering only
what is perceived as the essential features – has also been a driving force behind
the development of software engineering as a profession. Since the invention of
the programmable computer, progressively more high-level computer languages
have come to dominate software engineering. Parallel advancements have been
made regarding modelling ; diagrammatic modelling languages, techniques and
tools have been continuously developed to answer to the needs of the software
industry.

Perhaps inevitably, the synthesis of text-based programming languages and
diagrammatic modelling methodologies has become an objective in several con-
texts, none more so than in Model-driven engineering (MDE). Within this en-
gineering paradigm, the models themselves have become the primary software
artefacts, and the ultimate goal is to automatically generate working software
from pure diagrammatic (model) representations of domain knowledge.

Hopefully, having modelling tools and notations that possess proper seman-
tics can facilitate this goal. Being based on a strong mathematical foundation,
DPF promises to be able to define diagrammatic modelling languages that pos-
sess stringent, non-ambiguous semantics.

1



CHAPTER 1. INTRODUCTION 2

In this thesis, we will argue that the general industry practice of mixing dia-
grammatic modelling languages with textual constraint languages such as OCL,
leads to added (meta)model complexity. This complexity in turn puts demands
on developers and domain experts. It also leads to synchronization issues when
models are evolved, as well as making it technically difficult to preserve con-
straints in model transformations. Our proposed solution to these issues is a
multi-layer model editor based on the DPF. DPF provides us with stringent
semantics as well as diagrammatic constraint definitions, bypassing the need for
separate metamodelling hierarchies for models and constraints respectively.

In view of this, and based on previous development efforts as well as analysis
of existing tools, we will try to answer the following research question: Is it
possible to construct a DPF specification editor supporting metamodelling at an
arbitrary number of meta-levels?

We will try to answer this question by designing and implementing a model
editor for the DPF formalism, based on concepts adapted from the previous
efforts and containing functionality based on the DPF. Hopefully, this will be
the first of many steps towards a fully-fledged software suite based on DPF that
can be applied for research purposes as well as in educational and industrial
scenarios.

1.2 Structure of thesis

In addition to this introductory chapter, the thesis has been laid out as follows:

In Chapter 2: Research method, we give a short presentation of the
research method on which this thesis is based and briefly describe how this
method has been applied to the thesis.

In Chapter 3: Background, we introduce the Model-driven engineer-
ing methodology (MDE). We also introduce the Diagram Predicate Framework
(DPF) and relate this framework to MDE concepts. Lastly, we discuss meta-
modelling, both as a concept within MDE and in relation to DPF.

In Chapter 4: Previous efforts and current situation, we discuss the
previous efforts towards a working editor for DPF, pointing out their strengths
and weaknesses, particularly in relation to our own project. We also discuss the
current situation regarding a DPF tool in particular and metamodelling tools
in general. Lastly, we formulate the requirements for a DPF specification editor
and outline the general problem description for our thesis.

In Chapter 5: Technology platform and methodology, we describe
our choice of technology and how this creates a technological context for our
research. We also briefly discuss our choice of development methodology.

In Chapter 6: Design and development, we outline the design and
development of our tool. This includes the process of naming both the tool
and its individual components, the overall architecture of the solution, and the
individual packages that make up this architecture. Further, we describe the
editor and its (sub)package structure in more detail. Then, we discuss the
implementation of metamodelling capabilities, typing of a diagram’s graphs,
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and semantics validation. Lastly, we discuss some of the process-related issues
we encountered during the development phase.

In Chapter 7: Tool demonstration, we show the tool in use on a simple
example application. This gives a brief demonstration of our tool’s capabilities,
employing both its metamodelling functionality as well as its ability to validate
semantics based on a metamodel’s constraints. The demonstration serves as
a validation of the tool’s capability to perform a modelling task based on the
DPF.

In Chapter 8: Concluding matters, we conclude on our tool’s capabili-
ties, in relation to the DPF as well as previous efforts. We also describe some
possible avenues for further work, both directly and indirectly related to our
tool.

1.2.1 A note on definitions

All definitions and diagrams given in chapter 3 of this thesis, directly relating
to DPF, are taken from Rutle [62]. DPF is still a work in progress, and
definitions given in other articles and presentations may differ slightly in form
and/or content.



Chapter 2

Research method

In this chapter, we give a short presentation of the research method on which
this thesis is based and briefly describe how this method has been applied to
the thesis.

Computer science is a young discipline, where no single unified research
method has been established [10, 31]. Building on resources from – among other
fields – logic, mathematics, physics, engineering, social sciences, and linguistics,
researchers in computer science have had to adapt research methods from other
disciplines. It is not even entirely obvious whether computer science qualifies as
‘science’ in a traditional definition of the term [13, 12].

Denning et al. [10] point out that there are three major paradigms, or cul-
tural styles, by which research activity is typically carried out within computer
science. They label these styles theory (as rooted in mathematics), abstraction
(as rooted in the experimental scientific method), and design (as rooted in engi-
neering). Making a similar taxonomy, Glass [31] extracts the (general) scientific
method as a separate approach, and labels the three remaining methods analyt-
ical, empirical and engineering. Tedre [73], calling the paradigms traditions,
follows this pattern and makes the case that “The variety of research approaches
within and among those traditions [in computer science] might bring about on-
tological, epistemological and methodological confusion” [73, page 107]. In light
of this, it becomes important to conduct computer science research solely within
one of the mentioned paradigms. According to Tedre, “It is notoriously difficult
to conduct research in the intersection of research traditions without making a
mess of it” [73, page 107].

Solheim and Stølen [71] claim that a large part of computer science re-
search can be labeled technological research. This type of research is contrasted
to what is labeled “classical research”, i.e. the approach usually called the sci-
entific method (see table 2.1). In technological research, the focus is on creating
new or improved artefacts. Such artefacts can for instance be new programming
languages, security protocols, methods, or – as in our case – programs. Techno-
logical research is carried out in an iterative process, containing the three steps
problem analysis, innovation, and evaluation.

4



CHAPTER 2. RESEARCH METHOD 5

We recognize the research carried out in relation to this thesis as technolog-
ical research, and have carried out the research and development in accordance
with the method’s steps in the following manner:

Problem analysis: Initially, we investigated existing solutions and products
in order to evaluate to what extent these could provide a basis for our
artefact. We concluded that no single product or application fulfilled our
need for a multi-layer diagrammatic model editor, functioning as a plug-
in to the Eclipse platform. New research and development was needed,
building on the theoretical framework provided by the Diagram Predicate
Framework. This is discussed in chapter 4.

Innovation: The innovation part of this thesis work has been to create DPF
Editor, a multi-layer diagrammatic model editor for Eclipse. The choice
of technology is described in chapter 5, while the artefact itself and the
process of constructing it is described in chapter 6. Our claim is that
the finished artefact, DPF Editor, satisfies the requirements set forth in
section 4.3.

Evaluation: In this thesis work, we have evaluated our artefact against the
requirements set forth in section 4.3. Most aspects of how the artefact
satisfied these were evaluated informally during the development phase,
and fed back to requirements during iterations. Finally, two more elabo-
rate case studies were made in order to evaluate whether DPF Editor was
capable of fulfilling the given specification. One of these is described in
chapter 7, while another can be found in [5].

In chapter 7, we also briefly discuss further approaches for evaluating the
finished artefact.

Classical research Technological research

Problem Need for new theory Need for new artefact

Solution New explanations (new theory) New artefact

Solution should be compared to... Relevant part of the real world Relevant need

Overall hypothesis The new explanations agree with reality The new artefact satisfies the need

Table 2.1: Comparison of classical and technological research. From [71].



Chapter 3

Background

In this chapter, we introduce the Model-driven engineering (MDE) methodology.
We also introduce the Diagram Predicate Framework (DPF) and relate this
framework to MDE concepts. Lastly, we discuss metamodelling, both as a
concept within MDE and in relation to DPF.

3.1 Model-driven engineering

Model-driven engineering (MDE)1 is a software development methodology which
emphasize the use of models as the primary artefacts in the development pro-
cess [29]. This implies that software developers working within this paradigm
should be able to automatically generate information systems directly from mod-
els, without first going through the step of writing (text-based) computer code.
The goal is thus to move away from a code-centric approach towards a model-
centric approach, thereby separating business logic from implementation details
and getting domain experts more directly involved in the development process.

Unfortunately, no single definition of ‘model’ in the context of MDE has
gained industry-wide acceptance. Although similarly themed, many different
definitions exists. The challenge seems to be to achieve a definition that is wide
enough, but still retains enough substance for practical use [48].

Gonzalez-Perez and Henderson-Sellers [33, page 1779] state: “From
a simplistic point of view, we could say that a model is a statement about a given
subject under study (SUS), expressed in a given language.”2 This definition is
similar to one given by Seidewitz [67, page 1] (“a set of statements about some
system under study”), but it includes an explicit reference to the language of
the model.

Gonzalez-Perez and Henderson-Sellers [33, page 1779] go on to say: “we
can say that the major reason that we need models for is to reason about the

1The term MDE is not used universally, ‘model-driven development’ (MDD) and ‘model-
driven software development’ (MDSD) are also frequently used.

2The SUS (the modelled artefact) is given many designations in the literature: ‘original’,
‘application domain’, ‘real system’, and ‘subject under study’ are frequently used.

6



CHAPTER 3. BACKGROUND 7

complexity of the SUS without having to deal with it directly [...] As a result,
a suitable model would have to exhibit the appropriate structure for it to be
useful. For this reason, we prefer to say that, for a statement about an SUS
(expressed in a given language) to be a model, it needs to be homomorphic with
the SUS that it represents.”

This ties in with Stachowiak’s requirements(cited in [48]) that a model
needs to possess three features (table 3.1).

Mapping feature A model is based on an original

Reduction feature A model only reflects a (relevant) selection of
the original’s properties.

Pragmatic feature A model needs to be usable in place of the
original with respect to some purpose.

Table 3.1: Model features according to Stachowiak [48]

Furthermore, models can be categorized as prescriptive or descriptive [33].
This reflects the role a model plays in relation to the SUS. A prescriptive model,
created before the SUS, will act as a specification towards the SUS. A descriptive
model will function as a documentation of the SUS. In MDE, models can also
have both features, being used for both prescriptive and descriptive purposes.
Changes in the SUS are propagated to the model and vice versa. The process
where changes in a model are propagated to the SUS as the model evolves is
often described as either (meta)model evolution or application evolution in the
literature [72].

Model-driven architecture

The term Model-driven architecture (MDA) is often referenced in the litera-
ture. MDA is a reference implementation of MDE, specified by the Object
Management Group (OMG) [56]. Central to this standard is the notion of
a platform-independent model (PIM), a model independent of any implemen-
tation technology [45]. The PIM models the system from a business-centric
view.

By use of model transformations, the PIM is transformed into a platform
specific model (PSM). This model corresponds to some existing technology layer,
for instance EJB or Microsoft .NET. MDA requires one such PSM for each
technology platform. The final step is to transform the PSM into runnable
code [45].

In general, a model transformation is a set of rules, which specifies the way
(part of) one model can be used to define (part of) another model. (See also
section 3.3.4.)
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3.2 Diagram Predicate Framework

Diagram Predicate Framework (DPF) is a research project initiated in 2006
by the Bergen University College (HiB) and the University of Bergen (UiB),
Norway. The project involves several researchers from Norway and Canada [14].

Historical note: DPF has previously been branded as Generalized Sketches
(GS) and Diagrammatic Predicate Logic (DPL). Earlier articles may use this
nomenclature.

DPF is a graph-based specification format that takes its main ideas from
both categorical and first-order logic (FOL), and adapts these concepts to soft-
ware engineering needs. While in FOL the arity of a predicate is given by a
collection of nodes only, the arity of a predicate in DPF is given by a graph,
i.e. a collection of nodes together with a collection of arrows between nodes.
Besides, the main difference between FOL and DPF is that FOL is an “element-
wise” logic, i.e. variables varies over elements of sets. In contrast, DPF uses a
“sort-wise” logic where variables vary over sets and mappings [63].

DPF aims to be a completely diagrammatic specification framework for
MDE. The claim behind DPF is that any diagrammatic specification technique
in software engineering can be viewed as a specific instance of the DPF specifica-
tion pattern. DPF is a pattern, i.e. generic, in the sense that we can instantiate
this pattern by a signature (see definition 3, below) that corresponds to a specific
specification technique, like UML class diagrams, ER diagrams or XML [66].

The concepts of graphs and graph homomorphisms are essential to diagram-
matic modelling in general and to DPF in particular. Following Rutle [62], we
define these terms as the following:

Definition 1 (Graph) A graph G = (G0, G1, src
G, trgG) is given by a collec-

tion G0 of nodes, a collection G1 of arrows and two maps srcG, trgG : G1 → G0

assigning the source and target to each arrow, respectively. We write f : X → Y
to indicate that src(f) = X and trg(f) = Y .

(Note that this definition allows for multigraphs. In this type of graph, two
vertices may be connected by more than one edge.)

Definition 2 (Graph Homomorphism) A graph homomorphism ϕ : G →
H is a pair of maps ϕ0 : G0 → H0, ϕ1 : G1 → H1 which preserve the sources and
targets; i.e. for each arrow f : X → Y in G we have ϕ1(f) : ϕ0(X) → ϕ0(Y )
in H, such that the following diagram commutes:

X

��

f // Y

��
ϕ0(X)

=

ϕ1(f)
// ϕ0(Y )

This gives a structure-preserving mapping between two graphs.
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Arrows can also be composed. Following Fiadeiro’s [27, page 20] definition
of Categories, we will denote the composition of arrows by using semicolons (;).
For instance, the composition of arrows f and g will be denoted f ; g.

3.2.1 DPF Specifications

DPF models are represented by (diagrammatic) specifications. The syntax of
these specifications is given by the following definitions as stated by Rutle [62]:

Definition 3 (Signature) A (diagrammatic predicate) signature Σ = (ΠΣ , αΣ)
consists of a collection of predicate symbols ΠΣ with a map αΣ that assigns a
graph to each predicate symbol π ∈ ΠΣ . αΣ(π) is called the arity of the predicate
symbol π.

Table 3.2 shows a signature Σ = (ΠΣ , αΣ) used for object-oriented mod-
elling.

Definition 4 (Atomic Constraint) Given a signature Σ = (ΠΣ , αΣ), an
atomic constraint (π, δ) added to a graph S is given by a predicate symbol π
and a graph homomorphism δ : αΣ(π)→ S.

Definition 5 (Specification) Given a signature Σ = (ΠΣ , αΣ), a (diagram-
matic) specification S = (S,CS : Σ) is given by a graph S and a set CS of
atomic constraints (π, δ) on S with π ∈ ΠΣ .

Definition 6 (Type Graph and Typing Morphism) A type graph is a dis-
tinguished graph TG = (TG0, TG1, src

TG, trgTG). A typed graph (G, ι) which
is typed by TG is a graph G together with a graph homomorphism ι : G→ TG.
The homomorphism ι is called a typing morphism.

3.2.2 Instances and semantics

In DPF, the semantics of a predicate π is given by the set of its instances,
ι : O → α(π) where each ι is a graph homomorphism into the arity of the
predicate [62]. These semantics can be defined in different ways, according
to what is suitable. In table 3.2, we have used set theoretical definitions to
denote the semantic interpretation for each predicate. In a model editor, one
could implement a validator for each predicate. Following Rutle, we define the
semantics of predicates and the instance of a specification [62]:

Definition 7 (Semantics of Predicates) A semantic interpretation [[..]]Σ of
a signature Σ = (ΠΣ , αΣ) is given by a mapping that assigns to each π ∈ ΠΣ

a set [[π]]Σ of graph homomorphisms ι : O → αΣ(π) called valid instances of π,
where O may vary over all graphs.
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π αΣ(π) Proposed vis. Semantic interpretation

[mult(m,n)] 1
a // 2 X

f

[m..n]
// Y ∀x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n and n ≥ 1

[injective] 1
a // 2 X

f

[inj]
// Y ∀x, x′ ∈ X : f(x) = f(x′)

implies x = x′

[jointly-

injective]

1
a //

b

��

2

3

X
f //

g

��
[ji]

Y

Z

∀x, x′ ∈ X : f(x) = f(x′)
and g(x) = g(x′) implies
x = x′

[surjective] 1
a // 2 X

f

[surj]
// Y ∀x ∈ X :

⋃
{f(x)} = Y

[jointly-

surjective]

1
a // 2

3

b

OO X
f // Y

Z

g

OO
[js]

∀x ∈ X,∀z ∈ Z :
⋃
{f(x) ∪

g(z)} = Y

[inverse] 1

a
##
2

b

ee X

f
&&
Y

g

gg [inv] ∀x ∈ X , ∀y ∈ Y : y ∈ f(x)
iff x ∈ g(y)

[composition] 1
f //

h ��

2

g

��
3

X
f //

h
[comp] ��

Y

g
��
Z

∀x ∈ X : h(x) =
⋃
{g(y) |

y ∈ f(x)}

[image-

inclusion]

1

f
%%

g

99 2 X

f
''

g
77[v]
��

Y ∀x ∈ X : f(x) ⊆ g(x)

Table 3.2: A sample signature Σ = (ΠΣ , αΣ )

Definition 8 (Instance of Specification) Given a specification S = (S,CS:
Σ), an instance (I, ι) of S is a graph I together with a graph homomorphism
ι : I → S such that for each constraint (π, δ) ∈ CS we have ι∗ ∈ [[π]], where
ι∗ : O∗ → αΣ(p) is given by the following pullback diagram

αΣ(p)
δ

// S

O∗
δ∗

//

ι∗

OO

PB

I

ι

OO

Quote [62, page 37]: “To check that a constraint is satisfied in a given
instance of S, it is enough to inspect only the part of S which is affected by
the constraint.”
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Figure 3.1: The figure illustrates the relationships between a model, its metamodel, and the
modelling language that is defined by the metamodel. Adapted from [62].

3.3 Metamodelling

Metamodelling is a special kind of modelling: the resulting metamodels are
models themselves. However, as with the term ‘model’, there does not seem to
be any industry-wide consensus on these definitions [48]. Following Gonzalez-
Perez and Henderson-Sellers, we will define the term metamodelling as “the act
and science of engineering metamodels” [34, page 18]. Since the prefix ‘meta’
suggests that modelling has been performed twice, a metamodel can therefore
be called a “model of models”.

What makes this a special subject matter in the context of MDE is the fact
that the models and metamodels are “made from the same stuff”: they are of
the same conceptual type. (This introduces a recursive flavour to the process
and makes distinction between different model layers somewhat tricky. Consider
for example the phrase “the Class class in UML”. Does this refer to the Class
class in MOF3 or the Class class in the UML metamodel? Are those classes the
same? And what does ‘the same’ mean? Answering questions such as these can
often be non-trivial.) [34]

Metamodels can be viewed as (domain specific) language definitions. Meta-
modelling then becomes a mechanism for defining graphical modelling languages
which is used in the way grammars, for instance given in Backus–Naur Form
(BNF), are commonly used to define text-based languages such as programming
languages [45].

In MDE, a metamodel will define a new modelling language and this lan-
guage can in turn be used for repeated modelling, creating a model that con-
forms to or is an instance of its metamodel. We say that a metamodel defines
the abstract syntax for its instances, and that any model that conforms to its
corresponding metamodel is syntactically correct as defined by the modelling
language [62] (figure 3.1).

This is a recursive process that gives rise to what is commonly called a
metamodelling hierarchy. In a metamodelling hierarchy, the model at each layer,
or meta-level, is at at a higher level of abstraction than the one below. The
common way to terminate this hierarchical recursion is to define the “final”
or “uppermost” metamodel layer in terms of itself, making it a reflexive layer
(figure 3.2).

3See below
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Figure 3.2: OMG’s 4-layered hierarchy illustrating (meta)modelling languages and their corre-
sponding metamodels. Adapted from [62] and [72]. Note how the MOF 2.0 layer is a reflexive
layer, defined in terms of itself. Also note that the annotation is not standardized: some
publications number the layers downwards, starting with the M0 layer at the top.

The most widely used modelling language in MDE – and information system
modelling in general – is the Unified Modeling Language (UML), developed by
the OMG and currently in version 2.3 [57]. This language is designed as a
four-layered architecture. The top layer, M3, is defined in terms of the Meta
Object Facility (MOF), which provides a meta-metamodel. This M3-model
defines the language used to build the UML metamodel (M2). The various
diagram standards of UML, such as Class, Object, and Sequence diagrams, are
defined in this M2 language. This is the layer most developers interact with,
doing modelling at the M1 layer, using CASE tools or just drawing models by
hand [72].

3.3.1 Why do metamodelling?

In relation to modelling tools, there are two main reasons for doing metamod-
elling. First, without giving modelling languages a well-defined syntax, tool
construction will be difficult. Likewise, automated reasoning over models will
be hard to achieve. Second, the process of model transformation, a central tech-
nique of MDA (and MDE), depends on unambiguously defined models: Model
transformation tools and the set of rules that constitute a model transformation
are both generally created in terms of metamodels [45].
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Figure 3.3: The metamodelling design process. Adapted from [72]. The figure describes
the main elements that go into the process. At the M2 layer, the toolsmith, or language
designer, using a metamodelling interface, describes the model. The modelling environment is
the “traditional” modelling environment here shown in interaction with a SUS, or application
domain. Note how model evolution can occur at both meta-levels M2 and M1.

3.3.2 Domain-Specific Languages

The concept of a Domain-Specific Language (DSL) is also often introduced as a
feature of metamodels. The metamodelling process opens up for designing spe-
cialized modelling languages for specific modelling tasks (figure 3.3). These lan-
guages are contrasted to more general-purpose languages, such as UML. Some-
times this concept is the main reason for doing metamodelling, other metamod-
elling tasks may be more general in nature. However, the specificity of a DSL
or the generality of a general-purpose language is a relative factor, determined
by the language designer [38].

In contrast to general-purpose modelling languages such as UML, a DSL
gives the developer the ability to customize not only the (end-user) applica-
tion to a particular domain, but also the tools used to make the application.
According to Gronback [38, page 6], “...in the process of creating, maturing
and extending your DSL or family of DSLs, you might end up with something
akin to UML. The difference is that you’re using your organization’s family of
models, transformation definitions, and generation facilities, which are tailored
to your exact needs.”
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3.3.3 Constraints

Constraints are an intrinsic part of most modelling languages, augmenting the
basic modelling tool palette for specifying business rules and providing more ex-
pressive power for technical requirements. When analyzing traditional modelling
languages such as UML, we seek to make the distinction between structural or
built-in constraints and attached constraints. Constraints considered structural
are defined in the metamodel. These built-in constraints usually control such
traits as multiplicity and uniqueness. Attached constraints are defined outside
the metamodel. This type of constraint is usually defined with some textual
constraint language such as the Object Constraint Language (OCL). Attached
constraints usually control complex business rules and requirement features of
a model [64, 62].

In MDE, attached constraints are generally applied through the use of tex-
tual constraint languages [61]. For instance, in MDA, the OMG recommends
the combination of UML and OCL for the definition of platform independent
models (PIMs) [56]. However, this general practice of mixing diagrammatic
modelling languages with textual constraint languages may introduce several
problems when applied in a metamodelling scenario.

First, the introduction of an additional language is an inconvenience, perhaps
only slightly for the developer, but all the more for the domain expert, who now
has to master two specification languages in order to communicate successfully
with the developer.

Second, the tool designer has to take this into account, having to automate
reasoning over both the graph-based structures of a MOF-based (or any dia-
grammatic) modelling language as well as over the expressions from an separate,
attached constraint language such as OCL. Some very troublesome synchroniza-
tion issues, related to changes made in constrained models, seem to arise from
this situation [62].

3.3.4 Constraints and model transformations

As mentioned, model transformations are integral to MDE. They are used “ev-
erywhere”, for instance facilitating code generation, refinement of models, refac-
toring, adaptation, and evolution of models and model hierarchies. A model
transformation generates a target model from a source model using (at least)
one model and a transformation definition. Generally, a transformation def-
inition consists of one or more rules. As metamodels provide the modelling
languages for both the source and target models, each rule describes how one
or more constructs in the source language can be transformed into one or more
constructs in the target language [45, 62].

There also exists an inherent problem regarding attached constraints and
(rule-based) model transformations: As attached constraints are often defined
in a textual language, the transformation rules – being defined in the abstract
syntax of (diagrammatic) metamodelling languages – often just ignore the at-
tached constraints. In doing so, information can become lost in the transforma-
tion process. The developer has to correct for this, possibly through the process
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of manually entering additional code. Again we encounter a conflict with the
MDE goal of pure model-based development. According to [64, page 14]: “This
problem is closely related to the fact that the conformance relation between
models and metamodels is not formally defined for MOF-based modelling lan-
guages, especially when OCL constraints are involved.”

DPF seeks to remedy these issues by bypassing the notion of attached con-
straints altogether. Structural and attached constraints have thus been inte-
grated in diagrammatic specifications. These (integrated) constraints are now
defined by means of predicates that belong to a predefined signature. In this
way, constraints are defined diagrammatically, and treated uniformly [62].

3.3.5 Metamodelling in DPF

In DPF, the concept of metamodelling is tightly connected to the concept of
a modelling formalism, which can be regarded as a modelling language. In
order to reach the definition of a modelling formalism, we first need to define
typed signatures, typed constraints, and typed specifications [62]. Furthermore,
to define conformant specifications, we will need the definition of the Category
of Instances, Inst. Informally, Inst(S) is a category containing all instances
(I, ι) of S. A formal definition is given by Rutle [62, page 40].

Definition 9 (Typed Signature) A signature typed by a graph G is a signa-
ture Σ = (ΠΣ , αΣ) together with a map τΣ assigning to each predicate π ∈ ΠΣ

a graph homomorphism τΣ(π) : αΣ(π) → G. τΣ(π) is called the typing of π.
We use ΣBG or ((ΠΣ , αΣ)BτΣ G) to denote a signature Σ typed by G.

αΣ(π)
τΣ (π) // G Σ

τΣ
// G

Definition 10 (Typed Atomic Constraint) Given a typed signature
((ΠΣ , αΣ)BτΣ G), a typed atomic constraint (π, δ) added to a typed graph (S, ιS)
with ιS : S → G is given by a predicate symbol π and a graph homomorphism
δ : αΣ(π)→ S such that δ; ιS = τΣ(π).

αΣ(π)

δ
''

τΣ (π) // G

=

S

ιS

OO

Definition 11 (Typed Specification) Given a graph G and a typed signa-
ture ΣBG, a specification typed by the graph G is a specification S = (S,CS:Σ)
together with a typing graph homomorphism ιS : S → G assigning to each ele-
ment of S a type in G such that ∀(π, δ) ∈ CS : δ; ιS = τΣ(π). We write SBG
or ((S,CS:Σ)BιS G) to denote a specification S typed by G.

αΣ(π)
τΣ (π) //

δ
''

G Σ
τΣ

//

CS

&&

G

=

S

ιS

OO
=

S

ιS

OO
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Figure 3.4: Modelling formalism (Σ2BS2,S2,Σ3) together with a specification ((S1, CS1 :
Σ2)IιS1 S2). The figure also displays the alignment with the metamodelling hierarchy from
OMG. From [62]

Definition 12 (Conformant Specification) Let S2 = (S2, C
S2 : Σ3) be a

specification with Σ3 = (ΠΣ3 , αΣ3), and Σ2 B S2 = ((ΠΣ2 , αΣ2) BτΣ2 S2) a
signature. A typed specification S1 = ((S1, C

S1:Σ2)BιS1 S2) conforms to S2 iff
(S1, ι

S1) ∈ Inst(S2). We write S1IS2 or ((S1, C
S1 : Σ2)IιS1 S2) to denote a

specification S1 conformant to S2.

Σ3

CS2

  
Σ2

τΣ2 //

CS1   

S2

S1

ιS1

OO

We now have two kinds of specifications, typed and conformant. The differ-
ence lies in the fact that a conformant specification S1, in addition to be typed
by a graph also satisfy the constraints of another specification, S2. This leads
us to the notion of a modelling formalism [62]:

Definition 13 (Modelling Formalism) A modelling formalism (Σ2BS2,S2,Σ3)
is given by two signatures Σ2 = ((ΠΣ2 , αΣ2)BτΣ2 S2) and Σ3 = (ΠΣ3 , αΣ3) and
a specification S2 = (S2, C

S2:Σ3) which is called the corresponding metamodel
of the modelling formalism.

The modelling formalism (figure 3.4) is the key to achieving a metamodelling
mechanism in DPF. “In a modelling formalism (Σ2BS2,S2,Σ3), predicates from
the signature Σ3 are used to add atomic constraints to the metamodel S2. This
corresponds to metamodel definition. These constraints should be satisfied by
all specifications ((S1, C

S1 : Σ2) IιS1 S2). [...] Moreover, predicates from the
signature Σ2BS2 are used to add constraints to typed and conformant specifi-
cations; i.e. ((S1, C

S1 : Σ2) BιS1 S2) and ((S1, C
S1 : Σ2) IιS1 S2), respectively.

This corresponds to model definition. These constraints should be satisfied by
instances of these specifications.” [62, page 53] In this fashion, the constraints
cover the functionality of both structural and attached constraints as described
in section 3.3.3 above.
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To enable the termination of the metamodelling hierarchy, DPF also intro-
duces a reflective modelling formalism. This formalism specifies its own meta-
model, thereby terminating the metamodelling hierarchy [62, page 54].

In this manner, DPF provides us with the foundation to construct a dia-
grammatic (metamodelling) system with an arbitrary number of meta-levels
and with all constraints contained in one closed formalism.



Chapter 4

Previous efforts and current
situation

In this chapter, we will discuss the previous efforts towards a working editor for
DPF, pointing out their strengths and weaknesses, particularly in relation to
our own project. We also discuss the current situation regarding a DPF tool in
particular and DSL/metamodelling tools in general. Lastly, we formulate the
requirements for a DPF specification editor and outline the general problem
description for our thesis.

4.1 Previous efforts

So far, three separate efforts have been made to produce drawing tools or model
editors directly related to the DPF formalism. We will consider these efforts in
turn.

4.1.1 Sketcher95

Sketcher951 is a tool for drawing Generalized Sketches. It is a drawing tool only,
with no support for code generation or model transformations. The first version
of Sketcher95 was created in 1995 by a group from Latvia [39]. Originally, the
tool was developed for Windows 3.x as a 16-bit application. Later, it was
ported to the 32-bit Win32 framework. At present, the source code and any
comprehensive documentation for this project is missing [70], making further
development difficult.

An executable version of Sketcher95 is, however, available. It remains par-
tially unfinished. Notably, some common functionality is missing from the tool.
There is little or no support for cut/paste, undo/redo or zooming. Also, there

1We are not aware of any official branding of this tool, and will refer to it as Sketcher95.
This may be a misnomer. The application’s title bar displays the name “Sketcher”, while the
“About” dialog states “Sketch Application version 2”.

18
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Figure 4.1: Sketcher95’s main window. A sketch document (named “Person”) is shown in the
right edit window, its corresponding marker signature is shown in the edit window on the left.

seem to be some “selection tool shortcomings” [39, page 31] and lack of key-
board support in the edit windows. In addition, the tool suffers from irregular
application failures, making continued use a challenging exercise. Although un-
finished and as such unfit for general distribution, the application is runnable
on modern versions of Microsoft Windows and has given us valuable insight into
the subject matter.

Sketcher95’s main interface is implemented as a Multiple Document Inter-
face (MDI), typical for a Windows application of the mid to late 1990s. The
main application window consists of the traditional elements menu, toolbar, and
status bar, while various edit windows are contained inside the main window
(figure 4.1).

In Generalized Sketches, one differentiates between signatures (similar to
DPF signatures) and sketch documents (hereafter called sketches, similar to
constrained graphs in DPF specifications). This is reflected in Sketcher95 where
different types of edit windows exist for signatures and sketches. A signature is
tied to a sketch by not allowing the user to edit a sketch without first opening
an edit window for the corresponding signature. During the editing process,
both signature and sketch windows are kept active by the tool.

When the user creates a new signature, the signature edit window is shown
(figure 4.2). This windows allows for the editing of the three different kinds of
constraints in a signature: node constraints, arrow constraints, and signature



CHAPTER 4. PREVIOUS EFFORTS AND CURRENT SITUATION 20

Figure 4.2: A sample signature in Sketcher95. The content of a diagram constraint is activated.

constraints. There is also an option to edit the visualization of unconstrained
nodes and arrows.

As mentioned, a signature in Generalized Sketches corresponds to a signature
(Σ) in DPF (definition 3, page 9). A marker [65] in Generalized Sketches
corresponds to a predicate symbol in DPF. Applying a marker to an element
of a sketch will make the marker a constraint on that element. Sketcher95
distinguishes between predicates on nodes, predicates on arrows, and predicates
on diagrams, i.e. collections of nodes and arrows.

To visualize constrained nodes and arrows in sketches, the user can choose
from a comprehensive palette of graphical primitives to make up both node
shapes and arrow shapes and decorations. A node constraint has configurable
elements for name, descriptions and marker. An arrow constraint is similar, but
lets the user assign graphical primitives to both the tail, body and/or head of
the arrow (figure 4.3).

A diagram constraint has a shape that is given as a collection of nodes and
arrows. (This corresponds to the concept of a predicate symbol’s arity in DPF.)
When applying a diagram constraint to a sketch, the user must assign each arrow
from the constraint to a corresponding arrow in the sketch. The application
checks that all the arrows have the same direction and that the source and
target nodes have the same constraints as they do in the corresponding diagram
constraint.

To illustrate this, we will apply the predicate [jointly-surjective] from
table 3.2, page 10. The arity of the predicate denotes the general shape of the
predicate. To apply the diagram constraint to a sketch (figure 4.4), the user
must
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Figure 4.3: Arrow Constraints in Sketcher95

1. select the appropriate constraint to apply
2. select the arrows in the sketch that corresponds to the arrows in the dia-

gram constraint
3. repeat the last operation until all arrows from the diagram constraint has

been assigned an arrow in the sketch

A diagram constraint can also produce missing diagram elements. This
can be used to have constraints produce new connections between two or more
unconnected nodes when applied.

4.1.2 Sketcher .NET

Sketcher .NET was developed by Ørjan Hatland in 2006 as part of his master
thesis [39] at the University of Bergen. The Microsoft .NET Framework was
chosen as application platform, taking advantage of the modern programming
language C# (version 1.1). Sketcher .NET was developed around the same con-
cepts as Sketcher95, separating signatures and sketches in the same manner.
The user interface was brought up to date and implemented as a Tabbed Docu-
ment Interface (TDI). The signatures were also relocated to a docking toolbar
(figure 4.5).

Unfortunately, this application did not reach a finished state, and several
pieces of functionality are left unimplemented. As the source code is available
and written in a modern programming language, Sketcher .NET could have
been used by us as a base for further development. There are, however, some
weighty reasons2 for not doing so:

• The solution would be restricted to the Windows platform3

• HiB focuses on the teaching of Java based technologies

• Other development platforms such as Eclipse include more advanced mod-
elling features

2See also section 5.1, page 29
3We are aware of the mono framework [53], but do not believe that the mono implemen-

tation of Windows Forms (WinForms) would be suitable for this project.
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Figure 4.4: Applying the shape of the diagram constraint [jointly-surjective] in
Sketcher95. The user’s selection to mark an arrow in the constraint (1) and then an arrow in
the sketch (2), is marked with dotted ovals in the figure.

4.1.3 A GMF solution for Eclipse

In 2008, as part of his master thesis [70] at the University of Bergen, Stian
Skjerveggen did development work on an editor for the Diagram Predicate Logic
framework (figure 4.6). Retaining the main ideas from the previous attempts,
this project changed the developmental focus from a Windows-only solution to
a OS-independent plug-in running in the Eclipse [21] platform (section 5.1.1,
page 30, for a detailed description). The plug-in was developed using the
Eclipse Graphical Modeling Framework (GMF), “a set of generative components
and runtime infrastructures for developing graphical editors based on [Eclipse
Modeling Framework] EMF and [Graphical Editing Framework] GEF.” [75](see
also [18] and [37])

Although considerable progress was made, time did not permit for this
project to reach a finished state. Among the features left unimplemented are
support for metamodelling, dynamic generation of the tool palette, semantic
validation of constraints added to a graph, and automatic routing of constraints
that span connections. Additionally, Skjerveggen concluded that GMF was not
well suited to the task of making a DPF editor.
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Figure 4.5: Sketcher .NET main window, showing the tabbed interface and a dockable signa-
ture window.

This project would probably be the best candidate for a base for further
development. As we shall see, we chose not to continue development along the
same trail, our main reasons being:

• Architectural changes made in the DPF

• Some reluctance on the author’s part to continue using GMF

• An added emphasis on research problems regarding metamodelling

It is important to point out that without Skjerveggen’s work, we could very
well have been pursuing a similar, GMF-based solution.

4.2 Current situation

There still exists no working tool to create diagrammatic specifications based on
the Diagrammatic Predicate Framework. As stated, all the previous efforts have
been discontinued, and must be considered prototypes for our own development
activity. The previous effort can be considered the “best” so far, as it prototyped
several central DPF concepts on Eclipse and made some headway towards being
a real integrated development tool running inside an IDE, not just a sketching
application.

There is also a clearly stated need for a practical implementation of a DPF
(meta)modelling tool. The aim is to try out theoretical constructs in practice
and perhaps use the tool as a “sounding board” for new DPF features. There
also seem to be a need for a tool for educational purposes, as there exists plans
to start up a course in MDE-based methods – including DPF – at Bergen
University College.
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Figure 4.6: Stian Skjerveggen’s GMF-based solution running as an Eclipse plugin. In this
screenshot, a tree list (displaying the contents of both the graph and the corresponding dia-
gram), a toolbar, the diagram itself being edited, and a dockable palette can all bee seen.

4.2.1 Related tools

There is an abundance of visual modelling tools available, both as open source
software and as closed-source commercial products. Some of these tools also pos-
sesses metamodelling features, letting the user specify a metamodel and then use
this model in some new editor. A comprehensive list of such tools is beyond the
scope of this thesis; here we give a brief presentation of five metamodelling tools
currently available, The Visual Modeling and Transformation System, AToM3,
The Generic Modeling Environment, MetaEdit+, and MetaDepth.

VMTS

The Visual Modeling and Transformation System (VMTS) is an n-layer meta-
modelling environment which supports editing models according to their meta-
models [50]. Tool support for VMTS is available [78]. The tool allows for an
arbitrary number of (meta)modelling layers, but has no support for a completely
graph-based constraint language, as it uses a text-based language, Object Con-
straint Language (OCL), for the specification of constraints. It runs on the
Microsoft .NET framework.

AToM3

AToM3 (A Tool for Multi-formalism and Meta-Modeling) is a tool for multi-
paradigm modelling [2, 43]. The two main tasks of AToM3 are metamodelling
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and model-transformation. Formalisms and models are described as graphs.
From the metamodel of a formalism, AToM3 can generate a tool that lets the
user create and edit models described in the specified formalism. Some of the
metamodels currently available are: Entity-Relationship, GPSS, Deterministic
and Non-Deterministic Finite state Automata, and Data Flow Diagrams.

AToM3 is freely available. The tool does not allow for an arbitrary number
of (meta)modelling layers, nor is there support for a completely graph-based
constraint language (constraints can be specified as OCL or Python expressions).
The tool is implemented in Python and Tcl/Tk, and runs on most platforms.

The Generic Modeling Environment

The Generic Modeling Environment (GME) [49] is a configurable toolkit for
creating domain-specific modelling and program synthesis environments. The
configuration is accomplished through metamodels specifying the modelling
paradigm (modelling language) of the application domain [32].

The GME metamodelling language is based on the UML class diagram nota-
tion and OCL constraints. Metamodels specifying the modelling paradigm are
edited in the tool’s editor and saved to file. New editors can then be instantiated,
based on the newly generated metamodels. In order to simplify the editing pro-
cess, both models and metamodels are edited in the same environment. Model
visualization is customizable through built-in decorator interfaces. All GME
modelling languages provide type inheritance, and GME supports various con-
cepts for modelling, including hierarchy, multiple aspects, sets, references, and
explicit constraints.

The tool does not allow for an arbitrary number of (meta)modelling layers,
nor is there support for a completely graph-based constraint language. GME’s
architecture is based on Microsoft Component Object Model (COM), making it
extensible by any language that supports COM. The drawback of this approach
is that GME only runs on the Microsoft Windows platform.

MetaEdit+

MetaEdit+ is a commercially available integrated environment for Domain-
Specific Modeling (DSM) [77].

The tool lets the user produce Domain Specific Modelling (DSM) languages
through a graph-based modelling formalism. It also includes a graphical edi-
tor for specifying concrete syntax for DSM languages for use in model editors.
Support for metamodel evolution is also provided. A series of pre-defined mod-
elling languages are included, providing support for feature modelling, financial
service models, logic etc.

The tool does not allow for an arbitrary number of (meta)modelling layers,
but appears to support a graph-based constraint language. The tool is dis-
tributed as commercial software. MetaEdit+ is made with Smalltalk, and it
runs on both Microsoft Windows and X11-based operating systems.
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Tool N-layer Single
formalism

Cross platform Source
available

Sketcher95 No Yes No (Windows 32) No

Sketcher .NET No Yes No (.NET) Yes (C# 1.1)

GMF Solution
for Eclipse

No Yes Yes (Eclipse) Yes (Java/GMF)

VMTS Yes No No Yes (C#)

AToM3 No No Yes Yes (Python)

GME No No No Yes (COM)

MetaEdit+ No Yes Yes No

MetaDepth Yes No Yes Yes (Java)

Table 4.1: Comparison of features of model editors

MetaDepth

The MetaDepth [11] framework is a framework for multi-level metamodelling.
The system permits building systems with an arbitrary number of meta-levels
through deep metamodelling. The framework allows the specification and eval-
uation of derived attributes and constraints across multiple meta-levels, linguis-
tic extensions of ontological instance models, transactions, and hosting different
constraint and action languages. Constraints and actions can be defined using
Java or EOL [46]. At present, the framework is text-only; it does not yet contain
support for a graphical concrete syntax.

Tool overview

Table 4.1 shows a summary of the features we consider as most important for
our development effort. The column N-layer indicates whether a tool lets the
user edit models on an arbitrary number of meta-levels. The column Single
formalism indicates whether there is support for a completely graph-based
constraint language (all constraints contained in one closed formalism). Cross
platform indicates whether the tool easily can be run on more than one plat-
form, and the column Source available indicates whether the source code is
available, either through an open source license or otherwise.

(Note that MetaDepth has the most complete set of features by our evalua-
tion criteria. However, the tool does not yet contain a graphical concrete syntax,
and, as the tool was in its early development stages when work commenced on
our project, we did not consider MetaDepth as a basis for our work.)

As we have tried to show, we are presently unaware of any open-source
diagrammatic metamodelling tool that gives software developers the ability to
construct domain specific languages at an arbitrary number of meta-levels while
maintaining all constraints contained under one closed formalism.
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4.3 Requirements and problem description

In the following chapters, we will describe our effort to make a modelling tool
with an emphasis on metamodelling features. In this section, we formulate
the concrete requirements for this tool and also outline the general problem
description for our thesis.

Requirements based on previous efforts

The tool to be constructed should include the central features present in the
previous DPF tools. This includes functionality for:

• Drawing nodes and arrows in a specification diagram

• Creating and maintaining a model graph for the specification diagram

• Keeping the integrity of the graph of the diagram (no dangling arrows)

• Editing existing diagrams:

◦ Moving and resizing nodes

◦ Deleting nodes and arrows

◦ Support for undo and redo

• Persisting a specification

• Creating a specification based on a given metamodel

This list is not exhaustive. As we have employed an agile development
methodology (section 5.2, page 36), several user stories have been made, each
relating to one or more central tool features.

Additionally, the tool should also be multi platform, i.e. runnable on all
popular operating systems.

New requirements

The central new feature to explore in relation to the previous efforts, is meta-
modelling. It is our view that DPF will provide a sound theoretical basis for
constructing a metamodelling tool that allows the user to edit models on an
arbitrary number of meta-levels. Also, we believe that the DPF strategy of
keeping all constraints within one closed formalism will be beneficial for further
work in this area, especially if features such as model transformations, code
generation, versioning control, and metamodel evolution are to be added to the
system.

This adds the further requirements that the tool must have functionality for:

• Editing specifications at an arbitrary number of meta-levels

• Adding constraints to a metamodel and validate these constraints at the
instance layer
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Problem description

In relation to the previous, we formulate the following research question:

Is it possible to construct a DPF specification editor supporting metamod-
elling at an arbitrary number of meta-levels?

We will try to answer this question by designing and implementing a model
editor for the DPF formalism, based on concepts adapted from previous efforts
and containing the functionality as outlined above. We also believe that, if
successful, this editor will be an important step towards a general modelling
platform based on DPF.



Chapter 5

Technology platform and
methodology

In this chapter, we describe our choice of technology and how this creates a
technological context for our research and development. We also briefly discuss
our choice of development methodology.

5.1 Technological context

Our choice of technology platform for this project was somewhat straightfor-
ward, as the DPF research group already had voiced a strong interest in the
Eclipse platform and thereby expressed a preference for a DPF tool running in
Eclipse. Skjerveggen [70] discusses the choice of Eclipse over other technologies
such as Microsoft .NET in some detail. In our view, the following points were
important when settling on Eclipse as our development platform:

Eclipse is licensed under an Open Source license: Eclipse is distributed as
Free and Open Source Software(F/OSS) [26], making it an ideal candidate for
development work in an academic environment.

Eclipse has a large feature set : Eclipse comes bundled with EMF (see section
5.1.2), a collection of industrial-grade modelling tools based on Ecore/EMOF.

Eclipse is based on Java, an industry leading programming language1: Pro-
gramming courses at Bergen University College are mostly Java-centric. As
such, more students should be familiar with the Eclipse framework than with
systems based on other programming languages.

(As regards our choice of development tools peripheral to the Eclipse plat-
form (in particular source control and automated builds), see section 6.9.2, page
55.)

1According to the TIOBE Programming Community Index for April 2011 (http://www.
tiobe.com/index.php/content/paperinfo/tpci/index.html), Java is the most widely used
programming language industry-wide, ahead of C and C++.
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5.1.1 Eclipse

Eclipse [21] is an open-source software development environment managed by
the Eclipse Foundation. The platform has become an industry standard Java
IDE. Grown to a fully-fledged multi-language software development environ-
ment, Eclipse originated from IBM VisualAge for SmalltalkTM and IBM Visu-
alAge for JavaTM [24], both products originally written in the Smalltalk lan-
guage.

Eclipse is completely built around the concept of plug-ins. Everything in
Eclipse, with the exception of a small run-time kernel, is implemented as a
plug-in. Support for plug-ins is facilitated by the Eclipse component Equinox,
an implementation of the OSGi R4 core framework specification. [25] A plug-in
can facilitate further extension of Eclipse by declaring an extension point. By
declaring an extension point, a plug-in exposes a minimal set of interfaces and
related classes for others to use; other plug-ins declare extensions to that exten-
sion point, implementing the appropriate interfaces and referencing or building
on the classes provided [9].

The Standard Widget Toolkit (SWT)

Although almost completely built in Java, Eclipse does not base its user interface
on either the Abstract Window Toolkit (AWT) [59] or Swing [81]. Instead,
Eclipse has applied its own widget toolkit, called The Standard Widget toolkit
(SWT) [55]. The entire Eclipse user interface (UI) is based on SWT [9].

Where AWT delegates all its widget functionality to native widgets and
Swing emulates all widgets in the toolkit by implementing a 100% pure Java
solution, SWT employs a hybrid approach by using native widgets where possi-
ble and emulated widgets in the cases where native functionality is unavailable.
This has the disadvantage that porting the framework from one platform to
another becomes a more laborious process than for Swing [79].

On the other hand, the advantages are also significant. The “lowest common
denominator” (LCD) problem, as seen in AWT, disappears. The LCD problem
occurs when a widget toolkit only implements the features common to all ele-
ments in a large set of native UIs, eschewing innovative and productive features
that is present in one or more, but not all, UIs that the toolkit covers [81].

Swing tries to tackle this problem by emulating all widgets, implementing
them in pure Java. Compared to Swing, SWT becomes more lightweight, having
done away with the emulation of a large numbers of UI features that Swing
emulates, although the underlying UI already features an implementation. As
the emulation of UI features seldom is perfect, Swing often displays a look and
feel that experienced users of a native UI will recognize as “not the real thing”
as opposed to SWT’s use of native widgets. There is also a speed advantage,
as native drawing routines often outperform calls to the graphic context from
Java Swing. [55]
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Figure 5.1: A simplified subset of the Ecore metamodel. Adapted from [8].

5.1.2 The Eclipse Modeling Framework

To quote the EMF project’s web site [18]: “The EMF project is a modeling
framework and code generation facility for building tools and other applications
based on a structured data model.” Lately, what was formerly known as EMF
has itself become part of the larger Eclipse Modeling Framework Project (EMF),
where the “old” EMF is denoted EMF (Core). When nothing else is noted, we
will mean EMF (Core) when discussing EMF.

EMF’s metamodel is called Ecore. Ecore is a reflective model, which means
that it is its own metamodel. Ecore is almost identical to a subset of MOF
(section 3.3, page 11) called Essential MOF or EMOF. This makes EMF a
MOF-based modelling language (EMF can actually read and write EMOF se-
rializations transparently) [8]. A simplified subset of the Ecore metamodel is
shown in figure 5.1.

In EMF, several tools are available to let the developer create and modify
models. The most basic form of model editing is done through a simple tree-
based editor (figure 5.2). Models can also be created through XML documents,
annotated Java interfaces or by importing UML models created in Rational
Rose [8].

EMF supports serialization of Ecore models to the XMI [58] format. This
facilitates easy serialization and de-serialization of models [8].

EMF also includes facilities for generation of Java code based on the struc-
ture of an Ecore model. This is done through the intermediate stage of using an
generator model as basis for the code generation process. This model contains
additional information that’s not present in the data model itself, “but instead
resides in a generator model made up of decorators for Ecore model objects.” [8]

5.1.3 The Graphical Editing Framework

The Graphical Editing Framework [37] (GEF) bundles three components; Draw2d,
the GEF (MVC) framework, and Zest2. These components are distributed as
separate Eclipse plug-ins, but they are often described as a coherent whole.

2Zest [80] is a visualization toolkit and constitutes a set of (graph) visualization components
built for Eclipse. The entire Zest library has been developed in SWT/Draw2d. Although a
part of GEF, we have not employed Zest in our project.
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Figure 5.2: EMF’s tree-based Ecore editor. Shown here is a part of the Ecore metamodel
itself begin edited.

Draw2d

Draw2d [15] is a lightweight framework for two-dimensional layout and rendering
built on top of SWT. As such, it can be distributed and used independently from
Eclipse. Draw2d introduces the concept of figures. A figure is a lightweight
(having no counterpart in the underlying native UI) graphical component in
Draw2d. Draw2d uses an SWT Canvas object as the medium for drawing figures
and for handling user input events. Draw2d also has support for text, by means
of labels and several “rich text” features. In addition, Draw2d has a built-
in concept of connections, i.e. connection lines between figures. These lines
can receive text decorations as labels and graphical endpoint decorations for
displaying arrows etc.

Input events are handled by an org.eclipse.draw2d.SWTEventDispatcher

object that adds SWT event listeners on a Canvas. Paint events are forwarded
from figures to an org.eclipse.draw2d.UpdateManager, which handles the job
of laying out and repainting figures. This happens in two phases. First, invalid
figures are laid out, creating damage regions. Second, all damaged areas of the
graph are repainted [15].

Draw2d figures can be composed in parent-child relationships. This means
that a parent figure is responsible for painting (and optionally lay out) its chil-
dren, and children are not painted on areas outside its parents’.

Prime Draw2d features are [15]:

• Layout and rendering support

• Various figure and layout implementations

• Borders
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Requests
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Figure 5.3: GEF (MVC) overview. GEF (MVC) can be loosely defined as the region inside
the oval. The framework provides input handlers (Actions and Tools) that turn SWT events
into requests. Requests and Commands are used to encapsulate interactions and their effects
on the model. The Controller provides the link between an application’s model and view.
Adapted from [38] and [36].

• Cursors and Tooltip support

• Connection anchoring, routing, and decorating

• Multiple, transparent layers

• Flexible coordinate systems

• Overview window (thumbnail with scrolling)

• Printing

This provides a flexible system for laying out and drawing diagrams to screen,
making the handling of user input and drawing routines fairly transparent for
any GEF application.

GEF (MVC) framework

The GEF (MVC) framework, hereafter called GEF, is layered on top of Draw2d.
GEF expands on SWT and Draw2d by adding editing capabilities to widgets
and drawings. This is achieved by implementing a Model-View-Controller
(MVC) pattern [47] where the views are implemented either as an SWT-based
tree control or a Draw2d-based figure. The model is typically implemented as
an EMF model, although plain Java objects might be used in simpler cases.
This leaves the implementation of both the controller and the overall plug-in
functionality to GEF [7].

In the GEF MVC pattern, the model provides all user-modifiable and user-
viewable data. This also means that all data persistence is relegated to the
model. The controller or view should not persist or create any new data. Also,
the model should not maintain any reference to the controller or view, making
the coupling to the model as loose as possible [9].
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"Diagram"
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Figure FigureEdit Part Edit Part

Figure 5.4: MVC hierarchies in GEF. The typical arrangement is that EditParts maintains
children. Usually, this corresponds to a similar containment found in the model. For example,
the model may consist of a diagram containing nodes. There would then be a corresponding
diagram EditPart which contains multiple node EditPart children. This parent-child relation-
ship of EditParts carries over into their corresponding figures. The parent’s figure will contain
the children’s figures [36]. Adapted from [38] and [36].

Controller

The GEF controller (figure 5.3) initially registers with the model as a listener to
receive updates when changes are made to the model. Subsequent input from
the user is then propagated first to the model and then to the view.

The GEF controller is made up from a collection of instances of org.-

eclipse.gef.EditPart. As with figures, EditParts can maintain children.
The model’s structure is typically represented in diagrammatic form as Draw2d
figures. When this is the case, the collection of EditParts mirrors the structure
of both the model and view hierarchies [36] (figure 5.4).

There are two main types of EditParts in GEF: graphical and tree. Tree-
EditParts use SWT widgets to create a tree view for user interaction. Graph-
icalEditParts use Draw2d figures as their view. Different types of Graph-
icalEditParts constitute different types of model objects; for instance, GEF
distinguishes between child EditParts and connection EditParts. An EditPart’s
main responsibilities are to create and maintain an associated view, child Edit-
Parts, connection EditParts, and support editing of the model. [38]

An implementation of GraphicalEditPart is also responsible for creating the
figures that represent its corresponding model object(s). This is achieved by
overriding the getFigure() method.

EditParts can also be extended by the use of edit policies. These are in-
stances of org.eclipse.gef.EditPolicy, which are pluggable contributions
each implementing some portion of an EditPart’s behaviour. Using edit poli-
cies, EditParts can be extended without changing their class hierarchy [38].

Factories and figures

The creation of EditParts, and subsequently of figures for the view, is done
through the use of an EditPartFactory (figure 5.5). Every GEF canvas main-
tains exactly one edit part factory.
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Figure 5.5: Edit part factories in GEF. Subsequent figures are created by the EditParts when
their getFigure() methods are called by the framework. Adapted from [38].

The GEF canvas thus contains and maintains a collection of figures that
visually represents the underlying model. Each EditPart must create and man-
age figures representing the model object associated with that edit part. Each
figure in the GEF canvas must implement the org.eclipse.draw2d.IFigure

interface. Similar to the java.awt.Graphics class in AWT, the org.eclipse.-
draw2d.Graphics class provides drawing primitives [36].

Complex figures

As mentioned, Draw2d figures can be composed in parent-child hierarchies. In
GEF, a figure belonging to a specific EditPart automatically becomes a child
of that edit part’s parent figure. Custom figures can be made by extending
the Figure class and overriding the Paint method. All figures with children
must declare a LayoutManager responsible for positioning and sizing the child
figures. (Available layout classes are BorderLayout, FreeformLayout, Flow-
Layout, GridLayout, and StackLayout) [36].

5.1.4 Implementing GEF-based Eclipse plug-ins

The user interface of Eclipse is centred on the concepts of editors. Basic text
editors and source code editors for popular programming languages are provided
with Eclipse. Plug-ins that need to present their own editing functionality can
do so by implementing the org.eclipse.ui.IEditorPart interface. Editors
are typically built to modify some file type, and thus follow the classic open-
modify-save paradigm [9]. The files themselves are typically located somewhere
in the Eclipse workspace, a container directory for one or more Eclipse projects.
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A special case of the Eclipse editor is the graphical editor, which behaves as
an ordinary editor (modifies some file type), but does so by letting the user ma-
nipulate graphical entities, such as a diagram, rather than text. GEF provides
the org.eclipse.gef.ui.parts.GraphicalEditor class for this purpose. This
class can be extended in order to create a custom GEF-based Eclipse editor [36].

When a user manipulates figures in an editor, input events are created and
GEF translates these events into discrete GEF requests. These requests are
forwarded to any EditPart belonging to the figure that was manipulated. The
EditPart consumes the requests and produce GEF commands. GEF commands
encapsulate changes to the model that can be applied and undone [7]. This is
used in a Command pattern [30], making undo and redo in an editor easy to
implement.

Palette

A common supplement to a GEF editor is a palette, creating a common “visual
repository” for tools associated with the visual editor. This gives the user
a familiar visual pattern for creating and manipulating content in the visual
editor. In addition, context menus and other pop-up menus/tooltips etc. can
easily be created in GEF [36].

5.2 Development methodology

As our method of development, we have selected Extreme Programming (XP).
XP is a software development methodology developed by Kent Beck [6]. It
is an early and perhaps the best known example of what is called agile meth-
ods. [74]. This is a common description for “small-scale” development methods,
adhering to the agile manifesto [52]. During the last ten years, XP and other
agile methods have gained mainstream acceptance in the IT industry. As the
method is taught as part of a graduate course on modern software development
methods at HiB, it was a natural choice for use in this project.

XP can be considered a conglomerate of different and seemingly unrelated
development practices. Beck [6] argues that, although apparently unrelated,
these practices are interconnected and interdependent. Key practices are Pair
Programming, Test-Driven Development, Refactoring, Continuous
Integration, and Simple Design [52]. We will briefly discuss how we applied
these and other practices in the next chapter.



Chapter 6

Design and development

In this chapter, we outline the design and development of our tool. This in-
cludes the process of naming the tool and its individual components, the overall
architecture of the solution, and the individual packages that make up this archi-
tecture. Further, we describe the editor and its (sub)package structure in more
detail. Then, we discuss the implementation of metamodelling capabilities, typ-
ing of a diagram’s graphs, and semantics validation. Lastly, we discuss some of
the process-related issues we encountered during the development phase.

6.1 Finding names

We wanted to find a name for our tool that was both descriptive and concise.
Although our project is not an official Eclipse project, we opted to conform to
Eclipse development guidelines where possible. The reason for this was partly
to provide familiarity for other developers and partly to ease the process of
packaging and deploying the plug-in at a later stage.

6.1.1 Tool branding

The Eclipse development guidelines include the Eclipse User Interface Guide-
lines [23] and the Eclipse Project Naming Policy [22]. According to the latter,
the policy for project names is:

Descriptive Name: Projects are encouraged to use a descriptive name – a
name that is useful when placed into a box on an Eclipse architecture
diagram.

Nicknames: If a team strongly prefers to use a nickname style project name,
instead of a purely descriptive project name, there should also be a longer
“more official, but less often used” (MOLU) combination nickname-
descriptive project name.

Acronym: Most descriptive names are sufficiently long that it can be conve-
nient to abbreviate them in some way.

37
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Figure 6.1: The DPF Editor package structure as it exists at present. The boxes in this
diagram indicate Java packages, and the arrows indicate dependencies between these. The
dependencies go in the direction of the arrows: for instance, the tests package depends on
the core package. All packages have the prefix no.hib.dpf (omitted for clarity). Also, each
package is located within a separate Eclipse project.

Not a Product Name: To avoid confusion between Eclipse projects and com-
mercial products, Eclipse projects may not be named after commercial
products and vice versa.

Regarding this, we also took into account the fact that this is just the first
of – hopefully – many DPF-related tools. A fitting name for such a collection of
tools would be “DPF Tool Suite”, “DPF Tools” or similar. To emphasize that
this project primarily concerns itself with producing a (diagrammatic) drawing
and modelling tool for editing DPF specifications, we settled on “DPF Editor”
as the branded name for our plug-in. The abbreviated form will be “DPFE”.

6.1.2 Namespace and naming conventions

Our solution was implemented using the Java programming language. Related
to the branding of the plug-in was the choice of a suitable Java namespace. The
Eclipse Naming Conventions [19] recommends naming packages in conformance
with Sun’s (later Oracle’s) guidelines. These guidelines can be found in the
official naming conventions [42]. We followed this naming convention and settled
on no.hib.dpf as our root namespace. Individual Java packages were named
accordingly. We also followed the guidelines when naming classes, interfaces,
methods, and so forth.

6.2 Tool architecture

We placed our implementation of the DPF metamodel in the package no.hib.-

dpf.core and the GEF editor code in the package no.hib.dpf.editor. In ad-
dition, three more packages make up the current implementation of DPF Editor
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(figure 6.1): no.hib.dpf.core.tests, no.hib.dpf.pdebuild and no.hib.-

dpf.feature. These packages are implemented as separate Eclipse projects,
named accordingly.

The packages can be categorized as either “release/build packages” or “plug-
in packages”. The contents of the release/build packages are used in the auto-
mated build process only. The remaining packages contain the components of
the plug-in itself.

6.3 Release/build packages

These packages are used in the automated build process. See section 6.9.2 for a
description of this process.

6.3.1 no.hib.dpf.feature

The Eclipse feature concept lets developers combine several Eclipse plug-ins into
a single feature package. A feature package is seen as an atomic piece of software
by the end user, and can be installed in a single step. The feature manifest also
lets the developer specify which other features and plug-ins a feature needs in
order to run, if any.

At present, DPF Editor consists of two different plug-in projects, namely
core and editor. We have utilized the feature concept, and packaged our plug-
ins in one single feature. Upon build, DPF Editor is compiled into a single
jar file for further distribution. Any later additions to the plug-in architecture
should also be added to the main feature.

The feature definition is located in a separate Eclipse project, containing the
no.hib.dpf.feature namespace.

6.3.2 no.hib.dpf.pdebuild

PDE/Build [20] is an Eclipse framework for building plug-ins and features for
Eclipse. This is a flexible framework, providing support for a large number of
build scenarios. We have defined a simple build script within PDE/Build to
build our plug-in code.

There are two configuration files in this project. The build.properties file
was copied from the PDE source as per instructions on how to use PDE/Build.
The other file, build-dpf.xml is an ant [1] build file which actually runs the
build. Its skeleton was copied from the PDE/Build source, and modified for our
use.

PDE/Build also contains functionality for deploying finished artefacts to an
update site. This functionality is left inactive at the moment, but the plan is to
start using it when the DPF Editor becomes ready for wider distribution.

The PDE/Build code is located in a separate Eclipse project, containing the
no.hib.dpf.pdebuild namespace.
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Figure 6.2: The main component architecture of the DPF Editor plug-in packages. The Core
Model component is contained within the no.hib.dpf.core package, the Display Model,
Figures, Parts, and DPF Editor components all are parts of the no.hib.dpf.editor pack-
age.

6.4 Core and Display Models

In this and subsequent sections we will make a short presentation of the content
of DPF Editor’s plug-in packages. An illustration of the component architecture
of these packages can be seen in figure 6.2.

The purpose of our plug-in is to make the user able to edit DPF specifications
(definition 5, page 9). The editor we want to implement is a diagrammatic
editor, i.e. the user should be able to edit a specification graph by means of
manipulating a diagram. In our case, this diagram consists of three types of
objects, nodes, arrows, and constraints. The class definitions for these types of
objects are located in the no.hib.dpf.core package.

6.4.1 The core package

As the name hints at, the no.hib.dpf.core package contains our implementa-
tion of the core DPF (meta)model. The contents of this package were developed
using the EMF modelling tools. Using EMF for this task was a crucial element
of our development effort. The main reasons for settling on Eclipse and EMF
as an implementation platform have been given previously (section 5.1, page
29). In addition, we also intended to experience the model-driven development
process for ourselves. We believe that a hands-on experience with modelling
tools yields insights into the MDE process that is otherwise difficult to obtain.
In section 6.9, we discuss some of our experiences with using Eclipse/EMF as a
modelling tool.

The modelling was primarily done using EMF’s tree-based Ecore editor (sec-
tion 5.1.2, page 31). Making use of a generator model, we generated Java code
from our Ecore model. In this way, we got class skeletons and simple getters and
setters functionality ”for free”. More complex methods we had to implement
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Figure 6.3: The main classes that make up the no.hib.dpf.core package as modelled in
Ecore. This figure omits some of the less important auxiliary classes. Fields and methods,
as well as some association’s names, have also been left out for clarity. Associations with
multiplicity equal to 1 have been drawn without a multiplicity indicator. In the figure, we
recognize the Node, Arrow, and Constraint classes: Note that nodes and arrows can reference
other instances of the same type, in order to easily maintain typing homomorphisms between
graphs. Much important functionality is located in the Graph class, and instances of this class
will interact with instances of the classes mentioned, as well as being managed by instances
of the Specification class. Another DPF key concept is modelled in the Signature class,
and instances of this class maintain a set of predicates, also being referenced by constraints.
Lastly, instances of SemanticsValidator are referenced by individual instances of Predicate.

ourselves, applying Test-Driven Development (TDD) as the main development
practice.

The content of the no.hib.dpf.core package models the concepts of the
DPF. As mentioned, classes containing definitions for nodes, arrows, and con-
straints, designated Node, Arrow, and Constraint, respectively, are present in
this package (figure 6.3). Furthermore, classes representing the core DPF con-
cepts signature, predicate and specification are present, designated Signature,
Predicate and Specification. Finally, classes representing graphs and graph
homomorphisms are present, as well as a class that represents a generic seman-
tic validator. These last classes are named Graph, GraphHomomorphism, and
SemanticsValidator. Instances of Graph will contain (and be referenced by) in-
stances of classes Arrow, Node, and Constraint. GraphHomomorphism instances
will be used to apply constraints to graph elements. SemanticsValidator in-
stances will serve to validate semantics (see section 6.8, page 53).
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Figure 6.4: The Decorator pattern, as implemented in the Display Model. This figure
displays the solution for the DNode class, but similar solutions were implemented for DArrow and
DConstraint. For illustrational purposes, only a limited number of methods are shown. The
interface Node and its implementation NodeImpl are located in the no.hib.dpf.core package.
The DNode class belongs to the no.hib.dpf.editor.displaymodel package. IPropertySource

is an Eclipse interface.

It should also be pointed out that the Java implementation of this hierarchy
– as generated by EMF – consists of both interfaces confirming to the model’s
class hierarchy and Java classes implementing these interfaces. For instance, the
Node class as modelled in Ecore yields a Java generated Node interface as well
as an implementation of this interface located in the NodeImpl class. This way
of generating code facilitates the use of the Abstract Factory pattern [30],
which decouples the creation of objects from their use.

6.4.2 The Display Model

In addition to the Core Model component, we had to implement user-manipulable
counterparts to some classes in the no.hib.dpf.core package, namely Node,
Arrow, and Constraint. As the user should be able to manipulate instances of
these classes on-screen, two structural additions were needed:

• Position and size information for movable and sizeable objects

• Implement the IPropertySource interface for supply of display properties
to the model’s corresponding EditParts

This structural addition was achieved by implementing a simplified variant
of the Decorator pattern [30]: Display Model counterparts to the Core Model
classes Node, Arrow, and Constraint, named DNode, DArrow and DConstraint

respectively, are put in the sub-package named no.hib.dpf.editor.display-

model. Each of these classes implements the interface from their Core Model
counterpart and at the same time maintains a reference to an instance of an
implementation of this interface. Figure 6.4 illustrates how this is implemented
for descendants of the Node interface.

Using this implementation method, we can instantiate classes from the no.-

hib.dpf.core package inside our editor. These instances have added function-
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ality and data, but this additional information is decoupled from classes in the
Core Model. The consequence of this is that we can regard the Display Model
and Core Model components as one and the same in the context of GEF and
the DPF Editor.

In addition to these couplings, the graph of the diagram itself must be man-
aged. This management is done by the class no.hib.dpf.editor.displaymodel.-
DPFDiagram. This class is responsible for maintaining a reference to a Graph

object from the Core Model. This Graph object serves as the specification graph
for the diagram being edited.

A note on concrete syntax

As the above arrangement hints at, the concrete syntax (“how [...] modeling
concepts are rendered by visual and/or textual elements” [3, page 1]) of our ed-
itor is hard-coded to consist of arrows, two-dimensional nodes, and constraints
connected to these. Future solutions may focus on decoupling the editor’s con-
crete syntax from the editor environment. For instance, the implementation of
UML-like class definitions with compartmentalized graphical representations,
containing attributes and operations, would require such a decoupling. The di-
vision of the model into Core Model and Display Model should hopefully be of
assistance in this task. See also section 8.2.3, page 67.

6.4.3 Persistence/XMI

Although the Display Model and the Core Model components have been “fused”
together by implementing the Decorator pattern, one issue remains when it
comes to persist the contents of these models.

As mentioned in section 5.1.2, EMF models are easily serialized to the XMI
format. This means that we are handed an easy means to persist the Ecore part
of DPF specifications edited in DPF Editor.

The Display Model, being constructed as Plain Old Java Objects (POJOs),
does not offer this convenience. Thus, we adopted the functionality that came
with Eclipse’s “Shapes” plug-in example (see section 6.9.3, page 55), namely
using the writeObject() method of java.io.ObjectOutputStream to serialize
the Display Model objects to binary “snapshot” files. Leaving the references to
the Core Model instances transient, we could thus serialize only the “display
model” part of the model objects, leaving the “core” part to be serialized by
means of XMI.

Deserialization was handled by applying the readObject() of java.io.-

ObjectInputStream to serialized display models. When deserializing, the pro-
cess is reversed, reading both Display Model and Core Model objects separately
before joining them together in a single operation. In order to achieve this,
we needed some method of identification for Core Model objects, so they could
be referenced from restored Display Model counterparts. This was achieved by
letting the Node, Arrow, and Constraint classes inherit from the new class no.-
hib.dpf.core.IDObject. This class generates a unique ID (a string represen-
tation of a random java.util.UUID) and implements a single method, getId()
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Figure 6.5: Serializing a single node in the model. This depicts only part of the process of se-
rializing/deserializing a complete specification, but the pattern is the same for all objects.
A DNode instance in the Display Model is serialized using java.io.ObjectOutputStream

and deserialized using java.io.ObjectInputStream. Its counterpart from the Core Model
is serialized to and deserialized from an XMI file using org.eclipse.emf.ecore.resource.-

ResourceSet.
The ID of the NodeImpl instance is kept in the serialized version of the DNode, facilitating
re-coupling of the DNode and NodeImpl instances after deserialization. The two files, together
containing the serialized specification, have the same name, but different suffixes.

that returns this unique ID. This functionality lets us maintain a Core Model ref-
erence in a Display Model instance throughout the serialization-deserialization
operation by just serializing the ID in the Display Model instance. Figure 6.5
shows how this works for a single node in a specification.

This has the downside of creating two separate files for each DPF specifica-
tion edited in the plug-in. At present, the only method of synchronizing such
a pair of files is by giving them identical names, albeit with different suffixes.
This is planned resolved in a future version of DPF Editor. The file that is
associated with the DPF Editor is the file containing the display model, having
a .dpf file name suffix. The file containing the Core Model instance is given a
.dpf.xmi file name suffix.

6.5 The editor

In addition to the display model, the no.hib.dpf.editor namespace contains
three major components: the EditParts, the figures, and the main editor im-
plementation (see figure 6.2, page 40). In this section, we will examine these
components in turn.
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6.5.1 Controllers/EditParts

As mentioned in section 5.1.3, the GEF controller is made up from a collec-
tion of instances of org.eclipse.gef.EditPart1. In DPF Editor, this collec-
tion is placed in the no.hib.dpf.editor.parts sub-package. For each user-
editable class in the model, there exists a EditPart class that implements a
GEF controller. In our case, these EditParts are designated NodeEditPart,
ArrowEditPart, and ConstraintEditPart. In addition, an EditPart corre-
sponding to the DPFDiagram object in the model has been built. This class
(DiagramEditPart) serves as the main container for the whole edit area be-
longing to the editor. The diagram edit part is responsible for the container’s
layout and its edit policies.

To keep track of changes in the model, the EditParts in DPF Editor imple-
ment a simple variant of the Observer pattern [30]. This is done by having
all EditParts implement the java.beans.PropertyChangeListener interface.
Additionally, all Display Model elements maintain references to instances of
java.beans.PropertyChangeSupport, which trigger change events in a con-
nected instance of PropertyChangeListener. To set up this pattern, EditParts
instances add themselves as listeners to their corresponding model elements
(NodeEditPart to DNode etc). When changes are committed to the proper-
ties of a model element, the element calls the firePropertyChange() method
on its PropertyChangeSupport instance to notify any listeners that a change
has been made. This pattern keeps the model elements and EditParts loosely
coupled without the model elements having to directly reference any EditPart.

6.5.2 Figures

GEF relies on instances of org.eclipse.draw2d.IFigure to render graphical
components to the display. For DPF Editor, we implemented separate figures
for nodes, arrows, and constraints. Realizing these components, we kept close
to previous efforts’ visualizations, as well as those given by the DPF. See table
3.2, page 10 for proposed visualizations for a selection of constraints.

Our implementation is placed in the no.hib.dpf.editor.figures subpackage.
For nodes and arrows, we built our code on existing classes from the “Shapes”
plug-in example (see section 6.9.3, page 55). Node figures were realized by
extending org.eclipse.draw2d.Figure and arrow connections by extending
org.eclipse.draw2d.PolylineConnection. We encountered a more challeng-
ing task when faced with implementing the visualizations for multi-line con-
straints. Initially, we implemented an “arrow-spanning” constraint, the type
where a constraint visualization spans two arrows as in the predicates [jointly-

injective] and [jointly-surjective] from table 3.2. Implementing this kind of
visualization as a Draw2d connection required extending PolylineConnection

and overriding the outlineShape() method of that class. Later, we also imple-
mented constraint visualizations belonging to predicates with an arity contain-
ing just one arrow (for instance [mult(m,n)]), as well as visualizations spanning
two parallel arrows ([inverse], [image-inclusion]).

1All Eclipse namespaces are documented at [16].
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Figure 6.6: An arrow-spanning constraint visualization, in this case representing the
[jointly-injective] predicate from table 3.2. The two anchor points for the constraint
line are emphasized with black dots. The two Bézier control points are marked with red dots
in the figure (these are not drawn to the display as the control points are fixed and not user-
editable). The centre of the adjoining node, marked “x”, is also used to calculate on which
side of the constraint the control points should be placed and to which side of the node the
constraint should be drawn. The label “[ji]” is also drawn to the graphic display by the figure.

In contrast to arrows, which are anchored to figures (see below), constraint
visualizations that span arrows (as shown in figure 6.6) must be anchored to
some point on these arrows. These points are calculated by traversing the ar-
rows a fixed distance from a node to which the arrows are connected. Having
calculated these points, we implemented the arrow-spanning constraint visual-
izations by drawing a cubic Bézier curve [28] between the two points, calculating
the control points for the curve using the two control points and the adjoining
node for reference. See figure 6.6 for a stylized view of this kind of constraint
visualization. Constraints with single arrow visualisations usually just print a
label text to the GEF canvas.

Routing and Draw2d customization

Draw2d features a layout mechanism that is usually triggered when an on-screen
item is added, removed, moved, or resized. Layout features routing of connec-
tions. In the simplest case, routing involves drawing a (connection) line between
two nodes’ anchors. An ‘anchor’ in this setting is simply a point on the canvas.
When only one arrow connection between nodes is required, the functionality
available in the class org.eclipse.draw2d.ChopboxAnchor is sufficient (figure
6.7(a)). Instances of this class calculate the point at which the bounds of a
node’s figure are intersected by the line travelling from some reference point to
the centre of the figure [38].

When the user has drawn more than one arrow between nodes, however,
using ChopBoxAnchor results in two or more arrows being drawn on top of each
other. This is clearly not desirable from a usability standpoint. As Draw2d does
not offer a suitable alternative, we had to implement one ourselves. The class
no.hib.dpf.editor.figures.MultipleArrowsChopboxAnchor provides a so-
lution for this situation. The class expands on ChopBoxAnchor by allowing for
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(a)

(b)

Figure 6.7: Figure 6.7(a) shows the org.eclipse.draw2d.ChopboxAnchor class in principle.
The ChopboxAnchor’s location is found by calculating the point at which the bounds of a
figure are intersected by the line travelling from some reference point to the centre of the
figure [38]. Adapted from [38] and [35].
Figure 6.7(b) shows the no.hib.dpf.editor.figures.MultipleArrowsChopboxAnchor class in
principle. The figure shows a situation where three arrows’ connections are connected to a
node’s figure. The line travelling from some reference point to the centre of the figure is used
to generate one or more vectors (two in this example, shown with dotted arrows), orthogonal
to the line. The vectors’ length depends on the size of the owner figure. Based on each such
vector, a new (offset) internal reference point and a new line are defined from which new
anchor points on the figure’s bounds are found. Symmetry across two figures is achieved by
having the leftmost and/or lowest figure always calculate the anchor points from left, and vice
versa.

more multiple arrows entering or leaving a node getting separate anchor points.
For each arrow connection, a vector (in the geometric sense of the word), or-
thogonal to the arrow’s direction, is created. The vector’s length depends on
the node’s dimensions, being set at a fixed rate to the node’s internal size. This
vector is then used to calculate a new internal reference point in the node. Then,
the arrow connection is translated using the vector, and a new anchor point on
the bounds of the node’s figure can be calculated (figure 6.7(b)).

By using PolylineConnection instances, we let Draw2d do more advanced
routing than just drawing straight lines. Polyline connections are automatically
routed around any figures that lie on their path. This routing is performed by an
instance of org.eclipse.draw2d.ConnectionRouter [15]. In our case, this has
the implication that constraint connections, being dependent on the positions
of the arrows they span, must be laid out after the arrow connections have been
laid out. Unfortunately, Draw2d does not contain a mechanism that lets us
delay the layout of constraints until after all the connections have been laid out.
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Figure 6.8: The DPFEditor class and its interaction with the non-GEF classes and pack-
ages. This figure shows only some selected classes from each package and their references
across package borders. Fields, methods, and association names have been left out for clarity.
Associations with multiplicity equal to 1 have been drawn without a multiplicity indicator.
Note that the Graph object contains and interacts with Node, Arrow, and Constraint objects
from the displaymodel package. The Specification class’ containment of Graph (figure 6.3)
is omitted for clarity. Classes in the packages no.hib.dpf.editor.parts and no.hib.dpf.-

editor.figures implement the GEF “controller” and “view” functionality, respectively.

We got around this problem by introducing a new interface, RoutableFigure,
that was implemented by our figures and connections. This interface published
a method, getRoutingPriority(), that lets the implementing class signal its
priority in the routing queue. Lastly, we custom-designed a ConnectionRouter

that overrides org.eclipse.draw2d.AbstractRouter and lays out elements
which implements RoutableFigure.

6.5.3 The DPF editor

The functionality that ties all the plug-in classes together is placed in the class
no.hib.dpf.editor.DPFEditor. This class extends the abstract class org.-

eclipse.gef.ui.parts.GraphicalEditor, a general implementation of a GEF
editor. Its main responsibilities are:

• Creating and maintaining a reference to a Signature object

• Creating and maintaining a reference to a Specification object

• Creating and maintaining a reference to a DPFDiagram object

• Creating the palette

• Creating actions for constraint applications

At present, the Signature object contains a set of predicates that closely
match the signature definition from table 3.2. This definition is not hard-coded,
but loaded from a file in the user’s Eclipse workspace. If this file cannot be found
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when the plug-in is loaded, it is generated by the editor. Note that this signature
definition (from the Core Model) in its present state lacks a visualization com-
ponent. The corresponding constraint visualizations are, as indicated above,
implemented as fixed classes residing in the no.hib.dpf.editor.figures sub-
package.

The Specification object belongs to the Core Model. This object con-
tains a main graph object that contains references to all nodes, arrows, and
constraints that are under editing. It also contains a type graph object (see
below).

As mentioned, the DPFDiagram instance ties together the graph from the
specification and the Display Model data structure (figure 6.8). The editor
handles the DPFDiagram instance as the root of the display model, and it is
this object (and its referenced objects) that is serialized to a .dpf file when
the contents of the editor are saved to disk. In the plug-in’s manifest file [9]
(plugin.xml), the .dpf file name suffix is associated with the plug-in, making
Eclipse load the plug-in when the user activates this type of file.

Plug-in

The class no.hib.dpf.editor.DPFPlugin extends org.eclipse.ui.plugin.-
AbstractUIPlugin. This gives us support for plug-in preferences, i.e. the ability
to save and restore user preferences through a simple interface. By implementing
a Singleton pattern [30], an instance of this plug-in class is available project-
wide.

6.6 The user interface

In addition to editing items on the GEF canvas, the user interacts with DPF
Editor through the palette, constraint actions, the creation wizard, and the pref-
erence page. We will briefly describe these features here.

6.6.1 The palette

The GEF editing paradigm places editing tools in a palette. The palette in
DPF Editor functions in the same way as a common toolbar, icons representing
selection tools as well as nodes and arrows that can be added to the specification
being edited. The palette is dockable; it can be docked on either side of the
editing canvas. It can also be shown as a standard Eclipse view, i.e. it can be
put in any dockable window in the Eclipse editor. Figure 6.11, page 53 shows
the DPF Editor palette in use.

When the user selects a type graph that differs from the default (see below),
the palette will be configured to display a selection of nodes and arrows from
that particular type graph.



CHAPTER 6. DESIGN AND DEVELOPMENT 50

(a) (b)

(c)

Figure 6.9: Applying a constraint to a diagram. The partial screenshot in figure 6.9(a) shows a
situation where the user has selected two arrows. No dangling arrows are allowed in graphs, so
to make a valid graph, DPF Editor adds the three nodes adjacent to the arrows to the selection
graph. Then, all available predicates are compared to this new “selection graph”, trying to
find a graph homomorphism from the arity of the predicate into the selected subgraph. In this
particular configuration, the [jointly-surjective] predicate’s arity can be applied. When
invoking the context menu, the user is presented with the choice of applying a constraint from
this predicate onto the diagram. The partial screenshot in figure 6.9(b) shows the resulting
visualization, the constraint being drawn between the two arrows. The partial screenshot
in figure 6.9(c) shows part of DPF Editor’s toolbar, displaying available constraints from a
signature.

6.6.2 Constraint actions

As stated earlier, DPF constraints can be added to specifications. The user
can constraint a graph in the editor by using the mouse to select the nodes
and arrows that shall be constrained, thereby creating a subgraph, called the
‘selection graph’. Then, the system decides if any constraint is available for the
selection, trying to find a graph homomorphism from the arities of all available
predicates into the selection graph. If any such constraint is available, the user
can select it, either from the context menu (figure 6.9(a)), or by clicking a
constraint button on the toolbar (figure 6.9(c)).

Recall that a constraint is given by a predicate symbol and a graph homo-
morphism from the arity of a predicate into a graph (definition 4, page 9). In
our case, this graph is the main Graph object contained by the Specification

being edited. Also, the editor maintains a reference to a Signature object.
This signature contains the predicates we can choose from when creating a new
constraint. In order to automate this process, we have to provide functionality
for finding a graph homomorphism from one graph (the arity of each predicate)
into another (the main graph of the specification).



CHAPTER 6. DESIGN AND DEVELOPMENT 51

Finding graph homomorphisms

We have implemented a simple algorithm for finding graph homomorphisms
from one graph to another. This algorithm works by taking two graphs, source
graph G and target graph H. We then want to find at least one graph homo-
morphism G→ H. The algorithm achieves this by producing all permutations
of nodes in the target graph H and then checking for possible graph homomor-
phisms G→ H. This kind of algorithm possesses an exponential running time,
and is as such not suited for large graphs. Indeed, according to Hell and
Nešetřil [40], for each fixed simple graph H, the process of deciding whether
a simple graph G contains a homomorphism to H is NP-complete if H is not a
bipartite graph.

For our practical purposes, this will most likely remain unproblematic. First,
the predicate arities in question (graph G) are not very large, and matching two
small graphs (typically ≤ 5 nodes each) does not have a prohibitive cost in
computing power. Second, the set of nodes and arrows selected by the user
(graph H) must not have a node count that exceeds the node count from the
arity graph (graph G). If so, the search will default to false.

There is a possibility that this solution will not suffice for all types of pred-
icates and graphs to be created with DPF Editor in the future. In such cases,
a solution where the user manually constructs the graph homomorphism may
be implemented. This solution would then “kick in” when node count in one or
both graphs exceed a pre-set limit.

6.6.3 The creation wizard

In Eclipse, an editor plug-in is normally associated with a certain file type.
As mentioned, DPF Editor is associated with files having the .dpf file name
suffix. The standard way for a user to create such a file, is to invoke a creation
wizard which steps the user through the process of creating a new file used for
a plug-in’s workspace.

At present, our plug-in possesses one such creation wizard, which lets the
user specify

• The name and placement of the file containing the specification2

• An optional specification containing a type graph (see below)

The wizard was implemented by extending org.eclipse.jface.wizard.-

Wizard and implementing org.eclipse.ui.INewWizard. Figures 7.2(a) and
7.2(b), page 61 displays the wizard being used.

6.6.4 The preference page

In order to let the user specify certain values that define how the plug-in should
look and feel, we have created a simple preference page. This was achieved by

2As mentioned, the file gets a “twin” with the .dpf.xmi extension when Core Model objects
are persisted.
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Figure 6.10: The graph of the default metamodel, consisting of a single node and a single
arrow self-referencing the node. This graph will type any other graph.

extending org.eclipse.jface.preference.PreferencePage. At present, the
preference page for DPF Editor lets the user select the colouring for nodes and
whether type names and/or arrow names should be displayed on-screen.

In addition to this, we have added zoom capabilities to our editor, letting
the user change the zoom level of a diagram being edited. Also, the user can
superimpose a grid onto the editing area. Nodes can be made to snap to this
grid, easing the process of aligning nodes in a diagram.

6.7 Metamodelling and type graphs

In order to positively answer our research question (section 4.3, page 27),
we had to augment our basic DPF specification editor to support metamod-
elling at an arbitrary number of meta-levels. This was achieved by letting the
Specification class maintain a reference not only to a main graph (the graph
under editing), but also to a type graph (definition 6, page 9) that types the
nodes and arrows in the main graph.

The default type graph

In the default case, the user does not specify a type graph. In this case, the
editor creates a default type graph, containing two elements, a node and an
arrow (figure 6.10). Applying this type graph, nodes in the typed graph will
be of type Node and arrows in the typed graph will be of type Arrow. Any
Arrow may reference any Node, and therefore the default type graph can type
any graph created by a diagram in the editor. Figure 6.11(a) shows how the
palette looks when the default type graph is used.

Creating custom type graphs

Instead of using the default type graph, the user can specify that the graph
belonging to another specification should be used as a typing graph. This is
done in the creation wizard by specifying a previously saved specification file
(.dpf.xmi-extension). Upon wizard completion, the palette displays the nodes
and arrows available from the new typeset. DPF Editor will also respect the
resulting typing homomorphism by restricting the user’s ability to draw con-
nections between nodes in the diagram when any connections are not found
between the nodes’ corresponding types in the typing graph. Figure 6.11 shows
an example of a specification being used to define the type of another specifica-
tion.
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(a)

(b)

Figure 6.11: Two specifications being edited in DPF Editor. The first is defined using the
default type graph. The second specification has been created using the graph from the first
specification (“dpfSpecification1.dpf.xml”) as the type graph. Note how the node and arrow
names from figure 6.11(a) are repeated in the palette in figure 6.11(b). Also, in order to
respect the type homomorphism, the editor will not let the user draw an arrow from a “Y”
node to an “X” node in the lower diagram.

6.8 Semantics validation

As noted in chapter 3, in an editor one could implement a validator for each
predicate. The task of constructing a general-purpose validator for DPF seman-
tics is beyond the scope of this thesis. For prototyping purposes, however, we
have implemented some (hard-coded) validators. These descendants of the no.-
hib.dpf.core.SemanticsValidator class have been made for the [mult(m,n)],
[inverse], and [jointly-surjective] predicates as given in table 3.2, page 10.
Other predicates have – for the time being – been equipped with a default
validator that always returns true.

When deciding whether a specification graph is valid in DPF, we have to
regard the constraints that have been applied to the specification’s type graph.

Listing 6.1 shows a simplified implementation of the specification validator.
In general terms, it implements the pullback diagram from definition 8, page 9.
This method is triggered whenever the diagram is changed, i.e. when a node
and/or an arrow is added or removed.
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public boolean isSpecificationValid(Specification spec) {

boolean isValid = true;

for (Constraint c : spec.getTypeGraph (). getConstraints ()) {

Graph oStar = spec.createOStar(c);

isValid &= c.getPredicate (). validateSemantics(oStar );

}

return isValid;

}

Listing 6.1: A simplified listing of the semantics validator.

6.9 The development process

From the onset, we had to take into account two key factors regarding develop-
ment. First, in accordance with Skjerveggen’s [70] previous efforts, we had
committed ourselves to using EMF modelling tools for the data model. Second,
we had also rejected GMF as a workable platform, thereby defaulting to the use
of GEF as our toolkit of choice.

6.9.1 Development method and XP practices

As mentioned, we selected the XP methodology [6] as the basis for our devel-
opment effort. As no real customer representative were available to us on a
continuous basis, we had to adapt and downscale the XP practices related to
planning and customer tests slightly. Several members of the DPF group were
available for planning meetings. Informal tests and presentations were carried
out throughout the autumn 2010 and winter 2011. Our focus was on employ-
ing simple design [52], getting as much functionality as needed while constantly
seeking to minimize code size and simplify the overall design.

For most of the development part of this project, we had the advantage
of being two developers working on the code. This allowed us to employ pair
programming [52] as the primary coding (and modelling) practice.

A key XP practice is test-driven development (TDD), the practice of driving
the development process by working in short cycles, adding a failing test, then
making it work. [52] The set of EMF tools that comes shipping with Eclipse lets
the user set up tests related to models created using the Ecore modelling tools.
These tests are based on the application of the JUnit testing framework [44].
JUnit is now the de facto standard for unit testing Java source code [51, page
84]. It might be noted that, as tests are generated up front on the basis of
modelled classes, this way of doing TDD deviates somewhat from the “pure”
practice. Using the generated tests, we could nevertheless drive the development
of method functionality and refactor all non-public functionality, as we would
otherwise have done in TDD.
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6.9.2 Source control and automated builds

We used available source control resources at HiB as our source code repository
throughout the development process.

To achieve continuous integration and automated building, we installed and
set up Hudson [41], an open source continuous integration [52] (CI) server. Using
this tool, we achieved having the latest build available as reports on any failing
tests that may have been committed to source control.

Agile methodologies such as XP explicitly state that the amount of documen-
tation work products external to the code should be minimized. This practice
is sometimes paraphrazed as “the source code is the documentation”. Shore
and Warden [68] point out that (written) documentation should be created
until practices are in place to replace it. Also keeping in mind that participants
will enter and leave our project on a steady basis, handoff documentation will
also be required at times. We have practiced collective code ownership as well
as pair programming to distribute code knowledge better among project partic-
ipants. In addition, we have set up a wiki3 to concentrate work products such
as to-do lists and documentation snippets. This wiki is readable and editable
by all project members.

6.9.3 Special practices regarding GEF

As GEF requires the developer to code every element by hand, the work needed
to construct even basic GEF-based applications can be substantial. Also, com-
mands and property listeners are typically used for object instantiation, inter-
module messaging, and communication. This has the advantage of making
GEF very loosely coupled and thereby easy to extend. The downside is that
even simple debugging becomes non-trivial, as most messages are encapsulated
inside command queues that are not easily monitored in a debugger. This, and
other factors such as the sheer code size4, makes the learning curve of GEF
quite steep.

To the author’s knowledge, there does not exist any professional book that
solely focuses on GEF. Some good sources do exist, most notably [9, 38, 36, 69].
Moore et al. [7] is probably the most complete source on the subject, but has
become increasingly outdated, as GEF has been developed further. This lack of
documentation has probably affected our productivity. Neither of the project
participants had any notable prior expertise in developing GEF applications.
Consequently, we initially resolved to what can be described as “exploratory
programming” – we developed small subsets of our plug-in piecemeal in order
to learn or discover how certain aspects of GEF manifests themselves. This
practice loosely resembles what in Scrum [76] is called a “sprint”.

To get started using the GEF platform, we ran the example GEF applications
that come shipped with Eclipse. We managed to use the “Shapes” plug-in
example as a basis for our work, in the process re-working the code to our

3See http://en.wikipedia.org/wiki/Wiki
4Version 3.6 of the GEF(MVC) class hierarchy contains over 350 Java classes and interfaces.

Draw2d adds a further 250.
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needs. This had the advantage of getting a workable editor quickly up and
running. The disadvantage was a large piece of code that we had to “decipher”
over time as the development progressed.

6.9.4 Tool shortcomings

Modelling tools

We initially did some development on the Core component using the Ecore
Diagram Editing tool [8], a graphical modelling editor that is included in EMF’s
set of tools. Unfortunately, this tool sometimes seemed to generate invalid model
definitions, thus not giving the impression of a tool ready for production use.
We were also not satisfied with the layout algorithm, having to struggle to
control the graphical layout of references within the model. As a consequence,
we fell back to using the tree-based Ecore editor as the main model definition
tool. This turned out to be a satisfactory solution, apart from the issues we
encountered with refactoring (see below).

Lack of refactoring support

Successful application of TDD relies heavily on being able to apply the XP
method refactoring for improving code quality and generally guide the design
process [68]. Doing refactoring using Ecore with EMF tools, however, did prove
to be a troublesome experience. The Ecore modelling tools currently lack sup-
port for automated refactorings such as changing method and class names.

The modify-save-generate cycle thus needed to do simple refactorings was
both time and labour intensive, making us put off simple refactoring tasks and
focus more on planning than we would have done in a traditional Java program-
ming scenario. Of course, this does not comply very well with an agile approach,
where the developer ideally lets TDD and refactorings guide the design process
rather than doing large parts of the design work up front.



Chapter 7

Tool demonstration

In this chapter, we intend to show the tool in use on a small, but hopefully suf-
ficiently advanced example. This will be a brief demonstration of DPF Editor’s
capabilities, employing both its metamodelling functionality as well as the tool’s
ability to validate semantics based on a metamodel’s constraints. This demon-
stration serves as a validation of the tool’s capability to perform a modelling
task based on the DPF.

7.1 Demonstration setup

We will set up the demonstration by specifying an example information system
that models students’ course enrolments at universities. The system will consist
of:

A set of classes:

• Person

• Organization

• Activity

Further concretized as:

• Student

• University

• Course

References between entities:

• Universities can reference students and courses

• Students can reference courses and universities

• A course can reference students

A set of constraints:

• A student must reference at least one and at most four universities

57
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π αΣ2(π) Proposed vis. Semantic interpretation

[mult(m,n)] 1
a // 2 X

f

[m..n]
// Y ∀x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n and n ≥ 1

[surjective] 1
a // 2 X

f

[surj]
// Y ∀x ∈ X :

⋃
{f(x)} = Y

[inverse] 1

a
##
2

b

ee X

f
&&
Y

g

gg [inv] ∀x ∈ X , ∀y ∈ Y : y ∈ f(x)
iff x ∈ g(y)

Table 7.1: The signature Σ2 used in the metamodelling example

• A student must be referenced by at least one university

• References between students and universities must be inverse

• References between students and courses must be inverse

We implement this system by constructing a metamodelling hierarchy in DPF.
This hierarchy will consist of four metamodelling layers and one instance layer.
At the uppermost M4 layer (figure 7.1), we place a graph corresponding to DPF
Editor’s default type graph (section 6.7, page 52).

We then continue modelling, defining specifications at layers M3, M2, and
M1. Each specification’s graph is typed by the graph at the layer Mn+1.

At the M3 layer, we define the specification S3 = (S3, C
S3 : Σ4), which

models the concepts Class and Reference.

At the M2 layer, we define the specification S2 = (S2, C
S2 : Σ3), which

models the concepts Person, Organization, and Activity. No constraints have
been added to the hierarchy at layers M3 and M2, i.e. the signatures Σ4 and
Σ3 are empty.

At the M1 layer, in addition to type the specification S1 = (S1, C
S1 : Σ2)

using the graph from layer M2, we also let the specification be defined by a
signature Σ2 (table 7.1), which contains the predicates that we will need to con-
straint the model at the instance layer, M0. Specification S1 contains definitions
for Students, Universities, and Courses.

At the instance layer, M0, we will instantiate a model typed by S1 that
represents an extract of a system describing students’ course enrolments.

7.2 Tool preparation

In order to implement the information system as described above, we had to
implement the individual predicates belonging to the signature Σ2. Two pred-
icates – [inverse] and [mult(n,m)] – were already present in the system. The
remaining predicate – [surjective] – was added before we began modelling. As
there is no stand-alone predicate editor available for DPF Editor yet, the predi-
cate had to be hard-coded into the system, including functionality for semantic
validation (see section 6.8, page 53).
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Figure 7.1: A metamodelling example. The figure shows the metamodelling hierarchy that
we wish to model using DPF Editor. Layers are labeled M4 though M0, echoing the naming
scheme from OMG’s 4-level hierarchy. The graph at the M4 layer corresponds to the default
type graph in DPF Editor. The graphs at layers M3, M2, and M1 belong to specifications
S3, S2, and S1 respectively. At layer M0, an instance of S1, named I, is shown. Constraints
applied to S1 are shown in blue, and some (but not all) typing morphisms are indicated with
grey, dotted arrows.
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7.3 Tool demonstration

In this section, we demonstrate the essential steps for implementing the infor-
mation system as described above. DPF Editor runs inside Eclipse, and the
user activates the tool’s editor by selecting a project folder and invoking the
wizard for creating a new DPF Specification Diagram (figure 7.2(a)). The new
file, containing the specification, is given the name m3.dpf.

Then, the user can edit the specification S3 at the M3 layer, creating defini-
tions for Class and Reference. Figure 7.3(a) shows a screenshot of this editing
process.

Now, we want to use the graph from the specification S3 at layer M3 as a
type graph for a new specification S2 at layer M2. This is achieved by invoking
the wizard for creating a new DPF Specification Diagram once more. This time,
in addition to specify that our file shall be called m2.dpf, we also specify that
the file m3.dpf.xmi will contain the type graph for our new specification (figure
7.2(b)). Figure 7.3(b) shows a screenshot of the editing of the specification
S2 at layer M2. Classes Person, Organization, and Activity are added to the
diagram, including numerous reference types between them.

We repeat the pattern of invoking the wizard for creating the Specification
Diagram at layer M1, using the graph from the specification S2 at layer M2 as
type graph. Figure 7.3(c) shows a screenshot of the editing of the specification
S1 at layer M1. The user can add constraints as required, as the tool was pre-
loaded with a set of predicates corresponding to the signature as described in
table 7.1.

Having finished this last layer of specifications, we can use DPF Editor to
make instances of specification S1. One such instance is shown in figure 7.4(a).
If the user tries to make an instance that breaks the validation of any constraint’s
semantics, the tool displays a status message to that effect, as shown in figure
7.4(b).

7.4 Further evaluation

As a graduate course in Model-driven engineering (MDE) had been planned for
the spring semester 2011 at Bergen University College (HiB), the author had
hoped to be able to arrange for students to participate in a field experiment
designed for the testing of DPF Editor. Unfortunately, the course was post-
poned, and the opportunity to get user feedback from participants external to
the development project went away. Hopefully, the planned course will be held
at a later stage, opening up for extensive user-testing of the tool.
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(a)

(b)

Figure 7.2: The new DPF Specification Diagram Wizard. Figure 7.2(a) shows how the user
enters the name of the file that will contain a new specification. (Technically, the file will
contain only the Display Model belonging to the specification. See section 6.4.3, page 43 for
a description of DPF Editor’s persistence strategy.) Figure 7.2(b) shows how the user selects
an existing DPF graph file (.dpf.xmi) and specifies that it shall be used as a type graph for
a new specification.
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(a)

(b)

(c)

Figure 7.3: Editing the specification S3 at layer M3 through specification S1 at layer M1.
In figure 7.3(a), DPF Editor is configured by the default type graph, enabling the user to
create a diagram consisting of the types Node and Arrow. In this diagram, a single node
type, Class is created, as well as a single arrow type called Reference. In figure 7.3(b), DPF
Editor is configured by the type graph belonging to the specification S3 at layer M3, enabling
the user to create a diagram consisting of the types Class and Reference. In this diagram,
classes called Person, Organization, and Activity are created, as well as numerous reference
types between these classes. No constraints are added to the two first specifications. Figure
7.3(c) shows the editing of the specification S1 at layer M1. In this screen, DPF Editor is
configured by the type graph belonging to the specification S2 at layer M2, enabling the user
to create a diagram consisting of the types Person, Organization, and Activity. The editor
is also configured to let the user apply constraints from the signature Σ2. In this diagram,
entities called Student, University, and Course are created, as well as numerous reference
types between these classes. Also, constraints from the signature Σ2 have been added to
the specification. Note how, as the reference uCourses have been selected by the user, the
toolbar icons representing the constraints [mult] and [surj] have both become enabled.
The remaining constraint, [inv], is not enabled, as the current selection does not allow for
the creation of a graph homomorphism from the corresponding predicate into the selected
subgraph.
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(a)

(b)

Figure 7.4: Figure 7.4(a) shows the editing of an instance I at layer M0. The diagram
being edited in this screenshot corresponds to the instance graph at layer M0 in figure 7.1.
Note that the tool shows the legend “All constraints validated” as the content of the instance
conforms to the specification S1 defined at layer M1. Figure 7.4(b) shows an instance at layer
M0 failing the semantic validation. In this screenshot, we have removed a student reference
(cs1, dotted blue oval marked (1)), thereby invalidating two instances of the constraints [inv]
(“references between students and universities must be inverse”) and [surj] (“a student must
be referenced by at least one university”), from the specification S1. In the lower left corner
(dotted blue oval, marked (2)), the tool informs us that “Validation failed”.



Chapter 8

Concluding matters

In this chapter, we conclude on our tool’s capabilities, in relation to the DPF
as well as previous efforts. We also describe some possible avenues for further
work, both directly and indirectly related to our tool.

8.1 Conclusion

In this thesis, we have described how we constructed a diagram editor as a
plug-in for Eclipse based on DPF. The finished artefact can be run in Eclipse,
provided that Eclipse Modelling Tools [18] have already been installed.

We have improved on previous efforts (section 4.1, page 18) by implement-
ing a true multi-platform solution, runnable in Eclipse on all major operating
systems. To our knowledge, there does not yet exist any metamodelling tool
available for the Eclipse platform that contains the described functionality. This
also sets our editor apart from any related tool presently available.

In our view, the functionality now available does fulfil the requirements we
set forth in section 4.3, page 27, and can be summarized as follows:

Diagram editor: The user can edit specification diagrams in a graphical editor
by creating, moving, deleting, and connecting nodes and arrows. If a node
is removed, any connected arrows are also removed, prohibiting dangling
arrows in the diagram. The resulting graphs can be serialized to (and
de-serialized from) XMI files. The editor also supports undo and redo
operations.

Metamodelling and specification typing: This is probably the main new
piece of functionality available in our plug-in. The plug-in now has the
ability to create a metamodelling hierarchy of an arbitrary number of
meta-levels, thereby letting the user create specifications as new domain
specific languages. When applied as typing specifications, these DSLs will
establish new editor configurations. This is achieved upon creation of a
new specification, by specifying in the editor that the specification being
created shall be typed by the graph from a previously edited specification.

64



CHAPTER 8. CONCLUDING MATTERS 65

Typing has been implemented by creating type homomorphisms between
meta-levels in the metamodelling hierarchy.

Applying and validating constraints: The user can select a constraint, ei-
ther from the toolbar or from a context menu, and apply this constraint
to a specification diagram being edited. The tool itself guides this ap-
plication process, making sure that any new constraint is created with a
valid graph homomorphism from the predicate’s arity onto the diagram’s
graph. Typed specifications can be validated against any constraint that
has been applied to the type graph, provided these constraints have been
associated with a corresponding constraint validator.

Auxiliary functionality: Specification diagrams can be printed to a system’s
printer using Eclipse’s standard printing commands. A preference pane
lets the user specify the properties for user settings. For instance, if the
user does not wish to display arrow names in the diagram this can be
turned off in the preference pane. Also, the user can change the zoom
level while editing, as well as superimpose a grid on the editing area for
easier placement of nodes in the diagram.

Integrated development environment: We have also set up an integrated
environment to facilitate further development work. This environment
consists of a wiki, a continuous integration system, and source version
control.

8.2 Suggestions for further work

This section contains a selection of proposals for further work. The author does
not wish to make any prioritized list, as the focus and direction of development
may change on a later stage.

8.2.1 Signature editor

Today’s plug-in offer a single pre-defined signature for modelling use. This
signature is hard-coded, and future users of DPF Editor will probably wish to
define their own signature(s). A two-stage solution for this can be suggested:

1. Create a simple signature editor that lets the user compile signatures by
choosing between pre-defined predicates

2. Expand on this solution by enabling the user to edit individual predicates

A simple editor

The editor functionality for this first stage ought to be straightforward to imple-
ment as an Eclipse plug-in, perhaps by employing a wizard or similar “helper”
functionality. In conjunction with this, a set of pre-defined predicates would
need to be implemented by members of the DPF group. Candidate predicates
for this kind of collection could be found by evaluating predicates previously



CHAPTER 8. CONCLUDING MATTERS 66

π αΣ(π) Proposed vis. Semantic interpretation

[injective] 1
a // 2 X

f

[inj]
// Y ∀x, x′ ∈ X : f(x) = f(x′)

implies x = x′

[surjective] 1
a // 2 X

f

[surj]
// Y ∀x ∈ X :

⋃
{f(x)} = Y

Table 8.1: Two similar predicates in a signature. Both predicates possess the same arity and
only slightly dissimilar visualizations.

defined in the DPF literature. (See [14] for an updated list of papers.) This
could also lead to a theming of predicates for easy selection by the end user.

As the system exists today, the difficulty of defining a new predicate in DPF
Editor varies according to several parameters. If the predicate to be created
possesses the same arity and a similar visualization – perhaps only with a dif-
ferent label – as some previously defined predicate, the only new significant
component to develop would be the semantic validation checker for that par-
ticular predicate. For an example of such similar predicates, compare the two
predicates [injective] and [surjective] listed in table 8.1.

If a predicate requiring a new type of visualization and corresponding se-
mantics validation is needed, the required effort will be of a more substantial
character, depending on the complexity of the visualization and semantics in
question.

An advanced solution

The second stage – enabling the user to edit individual predicates – can also
be broken into two distinct sub-tasks. If the goal is to let the user define a
new predicate with new semantics but using pre-defined arities and visualiza-
tions, the predicate editor will depend on the system to possess some general
semantics validation system (see below). If the goal is to go beyond this and im-
plement a “free-form” editor, giving the user the power to edit both predicates’
arities and their corresponding visualizations, a generalized method of creating
visualizations would also be needed.

A note on DPF conformance

So far, we have avoided discussing how the editor conforms with DPF modelling
formalisms (definition 13, page 16). This stems from the fact that our Ecore-
modelled implementation of a DPF Signature is of the un-typed kind, not typed
as given in definition 9, page 15. This is a conscious decision, as we saw no need
to include an implementation of typed signatures before a working signature
editor was ready. The implication is that although being able to construct a
metamodelling hierarchy, DPF Editor does only conform partially to modelling
formalisms as they are defined within DPF.
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8.2.2 Semantics validation system

The current code includes a prototypal solution for validating a specification
based on the constraints applied to the specification’s type graph. The solution
includes hard-coded validators for each predicate we have chosen to include. A
general solution is an obvious extension to the project, and would have to include
features for describing the semantics of predicates in some high-level language.
Even without a signature editor, this component will probably be of benefit
for future developers, as it would lessen the workload needed to implement a
validator for a single semantic.

8.2.3 A more flexible graphical notation

As the system exists today, all visualizations (nodes, arrows, and constraints)
are hard-coded in the editor as subclasses of Draw2d figures and connections. To
obtain a more flexible tool, it would be desirable to decouple the visualizations
from the Display Model. As with the concept of a signature editor, this goal
may be achieved in more than one stage:

A widget solution: A set of simple graphical elements akin to a GUI widget
toolkit [54] can be constructed. An editor could be built, letting the user
build visualizations piecemeal from these “parts”, included as graphical
primitives in the editor. The resulting visualizations could then be made
to replace the current, default implementation in parts or whole.

Concrete syntax in a metamodelling hierarchy: Baar [3] proposes to ex-
tend the metamodelling approach to also include concrete syntax defini-
tion. By introducing so-called display manager classes that would bridge
a model’s abstract syntax and the visual language, the concrete syntax
could be completely decoupled from the diagram editor. This would en-
able a separate metamodelling hierarchy for concrete syntax in addition
to the existing hierarchy for abstract syntax. A major undertaking, this
solution would dictate radical refactoring and the need for more advanced
widget-based editors.

Also worth mentioning in this context is the design of the nodes and arrows
themselves. Currently, little effort has gone into the aesthetic aspects of the
diagram editor, and a less distracting user experience can probably be achieved
by doing work in this area. Related to this is also the matter of having user-
movable arrow and constraint anchors, where the automatic layout as it exists
today can be “tweaked” interactively by the user.

8.2.4 Layout and routing

Automated layout seems to become an issue when dealing with medium-sized to
large diagrams. Due to layout problems, we encountered problems using EMF’s
modelling tools while modelling a decidedly average-sized model (section 6.9.4,
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page 56). There seems to be a big usability gain to be capitalized on in this
matter.

Today’s editor contains a simple routing algorithm, based on Draw2d’s
ShortestPathConnectionRouter class. The problem of finding routing algo-
rithms that produce easy-readable output is a focus of ongoing research [60],
and this problem applied to DPF Editor can probably be turned into a separate
research task.

8.2.5 Code generation

Perhaps the real utility for an end user of DPF Editor will only become manifest
when some sort of (preferably stand-alone) running system can be generated
from specifications. We have already done some introductory work on code
generation [4], and further work in this area is already commenced. Several
solutions can be envisaged, for example Java code generation for class modelling
or SQL code generation for data modelling.

Related to this topic is the concept of model transformation. DPF has been
built with support for transformations [62], and this is probably one of the main
goals for a DPF tool to achieve. Along with support for (meta)model evolution,
support for this feature probably lies further into the future than most of the
other features mentioned.

8.2.6 Make editor code testable

At present, very little of the editor code itself is covered by unit tests. The
reasons for this are twofold. First, we used an existing example editor as a
base for the development of the DPF editor. This code was not equipped with
unit tests. Second, most editor components are tightly coupled to parts of the
Draw2d and/or GEF frameworks and thus remain hard to test.

To remedy this, a project that focuses on the decoupling of the editor classes
from Draw2d and GEF will probably make it easier to create unit tests for
the editor. This project can probably also be done separately from the other
development efforts, making it a good candidate for a stand-alone effort.

8.2.7 Moving beyond GEF

If DPF Editor is to remain an Eclipse-based plugin, it is hard to imagine dia-
grammatic editing being implemented in another platform than GEF. However,
this does not mean that the code needs to remain directly layered upon GEF.
Graphiti [17] shows promise, especially from a usability standpoint. Graphiti
may very well turn out to be a more suitable graphical platform on which to
build a diagrammatic editor for DPF.
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