
A Formal Approach to Modeling and Model

Transformations in Software Engineering

Adrian Rutle1, Uwe Wolter2, and Yngve Lamo1

1 Bergen University College, p.b. 7030, 5020 Bergen, Norway {aru,yla}@hib.no
2 University of Bergen, p.b. 7803, 5020 Bergen, Norway Uwe.Wolter@ii.uib.no

Abstract. A software model is an abstract representation of a software
system which can be used to describe, at a higher abstraction level, dif-
ferent aspects of the software system. Since the beginning of computer
science, raising the abstraction level of software systems has been a con-
tinuous goal for many computer scientists. This has lead to the usage of
models and modeling languages in software development processes. Cur-
rently in addition to documentation purposes, models are increasingly
used to automatically generate and integrate parts of the systems that
they describe. As a consequence, there is a huge need for formal model-
ing languages and formal transformation de�nition techniques which can
be employed to automatically translate between (and integrate) models.
Therefore, a major focus of our research is on the formalization of mod-
eling and model transformation in the generic formalism, Diagrammatic
Predicate Logic (DPL). This paper provides an overview of the state-
of-the-art of our ongoing research on analysis of modeling and model
transformations based on the DPL framework.

1 Introduction and Motivation

Models, model transformations and automatization of model transformations are
key issues in the emergent approach of software development process, which is
standardized by the Object Management Group (OMG) as Model Driven Archi-
tecture (MDA) [5]. In the MDA approach, building an application starts with a
(set of) formal, platform-independent models (PIM) in which the structure, logic
and behavior of the application are speci�ed. The PIMs are then transformed
by transformation tools to a set of platform-speci�c models (PSM). These PSMs
are used as input to code-generation tools which automatically create software
systems based on the input models [4].

In MDA, the application platform and the implementation technology are
chosen independently of the input models. This provides the �exibility to migrate
to new technologies without doing changes in the domain model. In addition, the
domain model can be modi�ed, in response to business changes, independently
of the application platform.

The transformation processes in MDA are speci�ed by transformation def-
inition languages and are executed by transformation tools. In order to enable
di�erent tools to understand the same transformations in the same way, the

2

models and the transformations between them are required to be de�ned for-
mally [4]. This implies the necessity of techniques which can be used to specify
formal models and formal transformation de�nitions. In addition, using formal
modeling techniques provides mechanisms for reasoning about models and model
transformations; mechanisms for model de-composition and integration; as well
as mechanisms for veri�cation of correctness, consistency and validity of models
and transformation de�nitions.

There are many modeling languages that are used to write formal domain
models. However, most of these modeling languages are either not su�ciently
formalized or very complicated (text-based) or both, which makes writing formal
models di�cult and error-prone [3]. Moreover, since software models are graph-
based, modeling languages which use string-based logic instead of graph-based
logic may fail to express all properties of software systems in an intuitive way
[2]. Thus, diagrammatic modeling is a better approach for modeling software
systems since it is graph-based � making the relation between the syntax and
semantics of models more compact �, and nonetheless, it is easier for domain
experts to understand.

However, diagrammatic modeling languages are considered more di�cult to
formalize than text-based languages, therefore, diagrammatic languages often
use text-based languages to de�ne constraints and system properties that are
di�cult to express by their own syntax and semantics, e.g. the combination of
UML and OCL. This turns models to a mixture of text and diagrams which
is often di�cult for non-experts to evaluate and understand, i.e. the models
loose their simplicity and high level of abstraction which are the most appealing
features of modeling.

The challenges in our research are to �nd a mathematical foundation for
terms and processes that are frequently used in conjunction with MDA. We have
used the DPL framework to answer questions such as; what is a model? what is
an instance of a model? how to check conformance of a model to its metamodel?
what is a model transformation? what is a correct model transformation? how
to categorize model transformations? how the e�ects of the execution of a model
transformation are analyzed? Some of these questions are discussed in more
details in this paper (Sectoin 2); and Section 3 concludes the paper.

2 The Approach for the Formalization

Our approach to the formalization is based on the generic formalism, Diagram-
matic Predicate Logic (DPL) [9,8]3. We considered DPL as a suitable speci�ca-
tion formalism to de�ne diagrammatic modeling languages with a strong mathe-
matical foundation since it is a fully diagrammatic speci�cation formalism which
we believe is necessary for formalization of modeling and model transformations

3 The DPL framework is called Generalized Sketches in previous publications, however,
since the concept of "sketch" is misleading in SE, the name of the formalism is
changed to DPL.

3

in Software Engineering (SE). This section summarizes the DPL framework and
its usage in modeling and model transformations.

2.1 Modeling and DPL

DPL is a graph-based speci�cation format that borrows its main ideas from both
categorical and �rst-order logic, and adapts them to SE needs [9]. The DPL
formalism is a generalization and adaptation of the categorical sketch formalism
where signatures are restricted to a limited set of predicates: limit, colimit and
commutative diagrams [7]. This generalization is necessary to make DPL suitable
for use in SE.

Signatures and diagram speci�cations are the concepts in the DPL framework
which we use to represent modeling languages and models. The de�nition of these
concepts are given as follows:

De�nition 1. A diagrammatic predicate signature Σ := (Π, ar) is an abstract
structure consisting of a collection of predicate symbols Π with a mapping that
assigns an arity (graph) ar(p) to each predicate symbol p ∈ Π, i.e. ar : Π →
Graph.

De�nition 2. A diagram (p, δ) labeled with the predicate p in a graph G(S) is
a graph homomorphism δ : ar(p)→ G(S), where ar(p) is the arity of p.

De�nition 3. A Σ-speci�cation S := (G(S), S(Π)), is a graph G(S) with a set
S(Π) of diagrams in G(S) labeled with predicates from the signature Σ.

In DPL, each (modeling) language L is represented by a formalism FL =
(ΣL,ML) which consists of a diagrammatic signature ΣL and a metamodel ML.
The signature ΣL contains the language constructs and constraints that can be
set by the language L, while the metamodel ML (which is a diagram speci�ca-
tion) speci�es the syntactical structure of models that are allowed to be speci�ed
by the language. In addition, the arity of each diagram predicate in the signature
ΣL is typed over the metamodel of the language L (discussed later). Moreover,
software models that are speci�ed by L are represented by ΣL-speci�cations
which conform to ML [7,6].

The diagram speci�cation which represents the metamodel of a language L
may, in cases where L is re�ective, be a ΣL-speci�cation. However in general,
a common formalism FC = (Γ,M) is used to specify the metamodels of the
languages in the DPL framework.

Metamodeling is a mechanism for de�ning graphical modeling languages
which is used in the way grammars in Bakus Naur Form (BNF) are used to
de�ne text-based languages such as programming languages [4]. A BNF gram-
mar describes which series of tokens are valid expressions in a language. In the
same way, a metamodel describes which graphs are valid models in a given mod-
eling language. A fundamental di�erence here is that the representation of the
structure of text-based languages is based on terms (abstract syntax trees,) while

4

graphical languages have a graph-like structure which makes it impossible to ap-
ply BNF for their representation [1]. The metamodels of the graphical languages
are usually represented by typed graphs.

Figure 1 shows an example of two diagram speci�cations which are repre-
senting a simpli�ed metamodel of EMF �Ecore� (Figure 1a) and a simpli�ed
metamodel of Relational Databases (RDB) (Figure 1b). The details of some of
the diagram predicates (and their semantics) from the signature Γ which are used
to label parts of the diagram speci�cations in the �gures are shown in in Table 1.
For example primary key in the metamodel of RDB is a special property which
every table in relational databases must have. This constraint is enforced by the
predicate label [cover] on the arrow table : PrimaryKey → Table, which is visu-
alized as a �lled arrow head. The set of columns which are speci�ed as primary
key must be unique for each table, i.e. each primary key belongs to only one table
and each table has only one primary key. This constraint is enforced by the pred-
icate labels [1− 1] and [1] on the diagrams Table ← PrimaryKey → Column,
and table : PrimaryKey → Table, respectively, meaning that each primary key
is a relationship between a table and a set of columns which is uniquely identi�ed
by the set of columns and the table.

name arity visualization semantic

[objectNode] 1 A set of objects

[valueNode] 1
�� ��A set of values

[total] 1
x // 2 A •

f // B ∀a ∈ A : ∃b ∈ B | b ∈ f(a)

[key] 1
x // 2 A

f [key]// B ∀a, a′ ∈ A : a 6= a′ implies f(a) 6= f(a′)

[singlevalued] 1
x // 2 A

f 1 // B ∀a ∈ A : |f(a)| ≤ 1

[cover] 1
x // 2 A

f � ,2B ∀b ∈ ℘(B) : ∃a ∈ A | b ∈ f(a)

[inverse] 1

x
$$
2

y

dd A

f

%%
[inv] B
g

ee ∀a ∈ A , ∀b ∈ B : b ∈ f(a) i� a ∈ g(b)

[disjoint-
cover]

1
x // 2

3

y

OO A
f // B

C

g

OO
S
{f(a) | a ∈ A}∩

S
{g(c) | c ∈ C} = ∅ andS

{f(a) | a ∈ A} ∪
S
{g(c) | c ∈ C} = B

[jointly-
mono] or
[1-1]

1
x //

y

��

2

3

A
f //

g

��

B

C

∀a, a′ ∈ A : a 6= a′ implies f(a) 6= f(a′) or
g(a) 6= g(a′)

[=] 1
x //

z
��>>>>>>>

[=]

2

y

��
3

A
f //

h ��@@@@@@@ B

g

��
C

h(a) =
S
{g(b) | b ∈ f(a)}

Table 1: A signature Γ .

5

(a) A simpli�ed diagram
speci�cationMEMF of Ecore.

(b) A simpli�ed diagram
speci�cation MRDB of the
metamodel of RDB.

Fig. 1: The simpli�ed metamodels of EMF and RDB.

Fig. 2: An EMF model, IEMF , which is an instance of the diagram speci�cationMEMF

(Figure 1a).

We say that a diagram speci�cation I conforms to, or is typed by, its meta-
model M if there is a graph homomorphism t : G(I)→ G(M), where G(I) and
G(M) are the carrier graphs of I and M respectively. While ι : I → G(M) is
said to be a valid instance of M i� for each diagram (p, δ) in M(Π), the part of
I related to the diagram δ, is a valid instance of p. The de�nition and examples
of being a valid instance of a diagram predicate and a diagram speci�cation are
given in [7]. Thus, we distinguish between conformance to and being instance of
(meta)models.

An example of an instance of the metamodel in Figure 1a is IEMF which
is shown in Figure 2. The nodes in this instance are typed by the nodes in
MEMF , e.g. Person:EClass and worksFor:EReference

4. In addition, the dia-
gram predicates inMEMF are respected by IEMF , e.g. the diagram ([total], δ1) :

(1
x // 2) 7→ (EReference

upperbound // Int) is ful�lled in IEMF which means that

every node of type EReference must have an upperbound (multiplicity) of type
Int.

ar([cover]) δ //
ta

!!tr))

IEMF

t

��
MEMF

In cases where it is desirable to classify the pred-
icates in a signature according to the diagrams of
the diagram speci�cation which they are allowed
to label, the arity of the predicates can be typed
over the metamodel of the language. As an exam-

4 Notice that Person:EClass is a "user-friendly" notation for the assignment (ι :
Person 7→ EClass)

6

ple consider a diagram predicate [cover] with the arity 1 → 2 in Σ in Table 1.
This predicate may be used to label instances of EClass → EAttribute, e.g.
Person : EClass → name : EAttribute. However, [cover] can also be used to
label instances of EClass→ EReference, e.g. Person : EClass→ worksFor :
EReference. Thus to distinguish between these two cases, the predicate [cover]
can be typed by ta and tr (in the �gure) such that either ta = δ; t or tr = δ; t for
any usage of [cover]. Alternatively, the predicate can be subdivided to [covera]
and [coverr].

2.2 Model Transformation and DPL

A model transformationMT : M1 →M2 consists of a set of transformation rules
t. Figure 3 shows a simple model transformation which contains one transforma-
tion rule. In the �gure, the transformation rule t : (ιP : P → G(M1)) → (ιP ′ :
P ′ → G(M2)) is declared for a speci�c pattern P which in turn is an instance
ιP : P → G(M1) of M1. For each match m : P → I of the pattern P in a given
input instance ι : I → G(M1), [[t]] will produce a match m′ : P ′ → I ′ of the
pattern P

′
in the output instance ι

′
: I

′ → G(M2). That is, [[t]](m) = m′.

P

ιP

||yyyyyyyyy
m

��

P
′

ι
P

′

""EEEEEEEEE

[[t]](m)

��

� //

G(M1) Iι
oo

[=]

trace
//
I

′

ι
′
//

[=]

G(M2)

Fig. 3: A model transformation with only one transformation rule

For a match m(P), the analogy is that P is the formal parameter of m and
some part of I is the actual parameter. That is, a pattern P can be seen as a
scheme and a match m assigns values from I to the variables in P . Thus the
input and output of transformation rules are set by patterns.

Figure 4 show examples of two transformation rules. The patterns P1 and P2

(Figures 4a and 4c, respectively) are instances of the metamodel of EMF (Figure
1a), and the patterns P ′1 and P ′2 (Figures 4b and 4d, respectively) are instances
of the metamodel of RDB (Figure 1b). Matches of the patterns P1 and P2 are
to be found in EMF models, i.e. instances of the Ecore model which is shown in
Figure 1a. An example of such an instance (IEMF) is shown in Figure 2. In this

�gure, the matches of the pattern P1 are the nodes and .
Moreover, the match of the pattern P2 in IEMF will be

.

Explicit Mapping between Patterns Generally in SE, equal names imply
equal elements, e.g. the transformation rule t1 in Figure 4 is understood as

7

(a) P1 (b) P ′1 (c) P2 (d) P ′2

Fig. 4: The transformation rules t1 and t2.

creating a Table for each EClass. To make this equality explicit, we introduce
an explicit mapping of elements in the input and output patterns. This can

be expressed by setting the requirement P K
� �
in

P
′
//? _

inPoo P
′ where inP ;m =

inP ′ ;m′ (Figure 5). An explicit mapping between the rules in Figure 4 may be
like Kt1 := {1 = 1} and Kt2 := {1 = 1, 2 = 2, 3 = 3}. The set of mappings Kt1

are abbreviated such that

{ 1:EClass X
� �
inP ′

1 //? _
inP1oo 1:Table } with

X 7→ 1:EClass and X 7→ 1:Table
is written as {1 = 1} where the �rst 1 is in P1 and the second 1 is in P ′1

5.

K � o

in
P

′

 @@@@@@@@Oo

inP

����������

P

ιP

��~~~~~~~~
m

��

P
′

ι
P

′

 AAAAAAAA

m′

��

� //

M1 Iι
oo

[=]

trace
//
I

′

ι
′
//

[=]

M2

Fig. 5: A model transformation rule where the mappings between the patterns P and
P

′
are expressed explicitly.

Thus, following our example of model transformation, the only match of the
pattern P ′2 that will be created in the target instance IRDB (Figure 6) will be

.

Model Transformation vs Model Transaction It is important to distin-
guish between the concepts of model transformation and model transaction.
While model transformation is a set of model transformation rules with a con-

5 The same abbreviation is applied for the coordinations Ci,j and C
′
i,j (De�nition 5)

8

trol mechanism to decide on the order of their execution on a transformation
engine (operational), model transaction is the global declaration of the transla-
tion of an input model to an output model (declarative).

That is, model transaction T : M1 ⇒M2 is a mapping which independently of
realization details speci�es which instances of an input model has to be translated
to which instances of an output model. In that sense, model transactions can
be compared to transactions in database systems, where each transaction is
composed of a series of database actions � queries and updates, executed in a
speci�c order.

As an example of a model transaction, see the metamodels in Figure 1. The
�gures show only the declaration of the translation between the models without
giving any details of the execution or the mappings between model elements. The
model transaction in the �gure is declared for the simpli�ed versions of Ecore
and the metamodel of RDB (Figures 1a and 1b respectively).

De�nition 4. A model transformation is a set MT = {Ki, ti, [[ti]], }, where:

� Ki is the set of mappings between Pi and P
′
i

� ti : Pi → P ′i is a set of transformation rules' declaration
� [[ti]] : mi → m′

i is the semantics of ti

The de�nition of model transformation above allows for heterogeneous model
transformations. The corresponding homogeneous model transformation is de-
�ned in the same way for M1 = M2.

Coordinating Transformation Rules The way in which the set of transfor-
mation rules ti in a model transformation are related to each other will depend
on coordinations between the patterns of the rules. These coordinations are spec-
i�ed as follows.

De�nition 5. A coordination C for a model transformation MT is the sets Ci,j
and C ′i,j, where

Ci,j := { Pi Ci,j
� �
inPj //? _

inPioo Pj } of common matches between the patterns Pi, Pj ∈
MT for i 6= j, that is, inPi ;mi = inPj ;mj. The set C ′i,j is de�ned in the same
way for all P ′i and P ′j where i 6= j.

The sets of coordinations between the patterns in Figure 4 may be de�ned
as C1,2 := {1 = 1} and C ′1,2 := {1 = 1}. The coordination is a syntactical re-
quirement for the alignment of the rules, i.e. to identify which elements of an in-
put/output pattern is part of the other input/output patterns. This is necessary
to avoid duplicates of elements in the generated model. A model transformation
MT with a set of coordinations C is denoted by MT C .

The same model transformation MT with di�erent sets of coordinations C
may give rise to di�erent model transactions, i.e. it may generate di�erent in-
stances of the output model. In the same way, di�erent model transformations

9

may create the same instance of the target model. This motivates for the de-
sign of a calculus to answer questions like: does a model transformation satisfy
a certain model transaction? and, if a model transformation satis�es a model
transaction, are we able to prove that satisfaction?

De�nition 6. A model transformation MT C : M1 ⇒M2 with a set of coordina-
tions C, satis�es a model transaction T : M1 ⇒M2, writtenMT C � T , if for each
instance ι1 : I1 → G(M1) of M1, MT C generates an instance ι2 : I2 → G(M2)
of M2.

The satisfaction condition above may be used as a condition for checking
the correctness of model transformations. However, it's important to note that
proving that a model transformation satis�es a model transaction may not be a
trivial case. This discussion, which is part of our current research, will be detailed
in a future work.

According to the model transaction T in Figure 1, any model transformation
MT C � T which satis�es T , with the input model IEMF (Figure 2), will cerate
an instance of MRDB , IRDB , as shown in Figure 6.

Fig. 6: The generated RDB model, IRDB , which is an instance of the diagram speci�-
cation MRDB (Figure 1b).

3 Conclusion

In this paper we have given an overview of the state-of-the-art of our ongoing
project on the formalization of modeling and model transformations based on the
formal, diagrammatic framework DPL. We have argued that a formal, diagram-
matic framework based on Category Theory is necessary for this formalization
process and shown how models, metamodels, modeling languages, transforma-
tion rules, patterns and transformation de�nitions can be represented in DPL.

In DPL, each language L is represented by a formalism FL which consists
of a signature ΣL and a metamodel ML. The metamodel is speci�ed as a ΣL-
speci�cation if it is re�ective, or as a Γ -speci�cation where Γ is the signature of

10

a common formalism which is used for the speci�cation of the metamodels of the
languages in the DPL framework. L-models are then speci�ed ΣL-speci�cations.
All ΣL-speci�cations are required to both conform to ML and be instances of
ML. We have distinguished between conformance to and being an instance of a
(meta)model; as conformance is only concerned about the syntax of the models
while being an instance means, in addition to conformance, respecting predicates
(or constraints) that are set by the metamodel.

Model transformations in DPL are represented as a set of transformation
rules which assign a match of an output pattern to matches of input patterns.
The global declaration of a model transformation is distinguished from the op-
erational description and called model transaction. Each model transformation
is controlled through a coordination mechanism and the order of its rules. Thus
the same set of rules may give rise to di�erent model transactions. In addition,
the same model transaction may be achieved by di�erent model transformations.
This result motivates for creating a calculus to reason about the satisfaction of
model transactions by model transformations with di�erent coordinations.

Some examples of models and model transformations are presented in the
paper. However, the details of checking of conformance, checking validity of
instances, checking satisfacition of model transactions and checking correctnett
of transformations are not discussed in this overview paper.

References

1. Luciano Baresi and Reiko Heckel. Tutorial introduction to graph transformation:
A software engineering perspective. In ICGT '02: Proceedings of the First Inter-

national Conference on Graph Transformation, pages 402�429, London, UK, 2002.
Springer-Verlag.

2. Zinovy Diskin. The graph-based logic of ER-diagrams and taming heterogeneity of
semantic data models, 1997.

3. Zinovy Diskin. Mathematics of UML: Making the Odysseys of UML less dramatic.

Practical foundations of business system speci�cations, chapter 8, pages 145�178.
Kluwer Academic Publishers, 2003.

4. Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: practice and promise.
Addison-Wesley, 1 edition, April 2003.

5. OMG. OMG Model Driven Architecture Web Site, June 2007. Object Management
Group, http://www.omg.org/mda/index.htm.

6. Adrian Rutle, Uwe Wolter, and Yngve Lamo. Models and model transformations
in view of diagrammatic predicate logic. Proceedings, OOPSLA 2008, Submitted.
Available at gs.hib.no.

7. Adrian Rutle, Uwe Wolter, and Yngve Lamo. Generalized sketches and model
driven architecture. Technical Report 367, Department of Informatics, University
of Bergen, Norway, 2008. Presented at CALCO Young Researchers Workshop 2007.

8. Uwe Wolter and Zinovy Diskin. The next hundred diagrammatic speci�cation tech-
niques: A gentle introduction to generalized sketches. Technical Report 358, Dept
of Informatics, University of Bergen, July 2007.

9. Uwe Wolter and Zinovy Diskin. Generalized sketches: Towards a universal logic for
diagrammatic modeling in software engineering. 2008. Proceedings, ACCAT 2007,
ENTCS, Submitted.

