
A Diagrammatic Approach To
Deep Metamodelling

Ole Klokkhammer

Master’s Thesis in Informatics - Program Development

Department of Informatics
University of Bergen

Department of Computer Engineering
Bergen University College

June 2014

Contents

Abstract vi

Acknowledgements viii

1 Introduction 1
1.1 Motivation . 1
1.2 Structure Of Thesis . 3

2 Model-Driven Engineering 4
2.1 The Current Situation . 4
2.2 Model Driven Engineering . 5
2.3 Domain Specific Modelling Languages 6

2.3.1 Internal Representation And Persistence 6
2.3.2 Abstract And Concrete syntax 7
2.3.3 Diagrammatic Modelling 8
2.3.4 Graph-based Modelling 9

2.4 Metamodelling . 10
2.4.1 Loose Metamodelling 12
2.4.2 Strict Metamodelling 13

2.5 Meta-Object-Facility . 14
2.6 Existing Initatives . 16

2.6.1 The Eclipse Modelling Framework 17
2.6.2 Diagram Predicate Framework 19
2.6.3 The DPF Workbench . 19

3 Problem Description And Methodology 21
3.1 Three Limitations . 21

3.1.1 The Role Of A Metamodel 22
3.1.2 The Replication Of Concepts Problem 23
3.1.3 The Multiple Classification Problem 24
3.1.4 The Classifier-Duality Problem 25

3.2 Deep Instantiation . 26
3.2.1 Powertypes . 27
3.2.2 Potency . 28

3.3 Linguistic And Ontological Instantiation 29

ii

3.4 Existing Initiatives . 32
3.5 Summary And Research Methodology 33

4 Comparison Analysis 35
4.1 Expected Outcomes . 35
4.2 Metadepth . 36

4.2.1 The Linguistic metamodel 36
4.2.2 The User Interface . 38

4.3 Melanee . 39
4.3.1 The Linguistic Metamodel 39
4.3.2 The User Interface . 41

4.4 Diagram Predicate Framework 43
4.4.1 The DPF Editor . 43
4.4.2 The DPF Visualization Editor 46

4.5 Summary . 49

5 Design And Implementation 50
5.1 Extending DPF - Part One . 50

5.1.1 Deep Instantiation . 50
5.1.2 Dual Classification And Linguistic Extension 52
5.1.3 Summary . 56

5.2 Evaluation by Code Generation 57
5.2.1 Design And Implementation 57
5.2.2 Results And Possible Improvements 61
5.2.3 Summary . 63

5.3 Extending DPF - Part Two . 63
5.3.1 Model Flattening Semantics 64
5.3.2 Mutability . 64
5.3.3 E-Graphs . 66
5.3.4 Summary . 69

5.4 Templates . 70
5.4.1 Enriched Graph . 71
5.4.2 Platform Independent Modelling Hierarcies in DPF . 72
5.4.3 Summary . 73

5.5 The Concrete Syntax . 74
5.5.1 The Visual Metamodel 75
5.5.2 The Model Mapping . 75
5.5.3 The Template Visualization Wizard 78
5.5.4 Filtering Model Elements In The Palette 79

5.6 Current Shortcomings . 81
5.7 Summary . 81

6 Demonstration 82
6.1 The Abstract Syntax . 82
6.2 The Concrete Syntax . 86

iii

6.3 The Default Class Diagram . 91
6.4 Customizable Concrete Syntax 94

7 Conclusion 96
7.1 Summary . 96
7.2 Further Work . 97

7.2.1 Current Shortcomings 98
7.2.2 Additional Features In The Model Editor 99
7.2.3 Concrete Syntax Improvements 101
7.2.4 Fully Functional Code Generator 102

List of Figures 104

List of Tables 108

Abbreviations 110

Bibliography 112

iv

Abstract
Metamodelling is used at the core of Model Driven Engineering to define

Domain Specific Modelling Languages. Atkinson and Kühne has however

pointed out several limitations with the current approach to metamodelling

and proposed deep metamodelling as a solution to these limitations. Deep

metamodelling has in the later years been recognized by several researches,

but there is still a lack of proper formularization of the concepts of deep

instantiation, linguistic/ontological classification and linguistic extension.

Secondly, current tools for deep metamodelling only facilitates either tex-

tual modelling or diagrammatic modelling in a single view. No current tool

has support for deep metamodelling in a fully diagrammatic modelling

environment.

In this thesis, we present a formularization of a fully diagrammatic ap-

proach to deep metamodelling through an extension of the Diagram Predi-

cate Framework. Deep instantiation is implemented with use of potencies.

The approach includes support for linguistic and ontological classification

in a linear meta-hierarchy. The editor can also be used to model linguistic

templates, and we have added support for linguistic extensions based on

linguistic templates. Lastly, the editor also has support for modelling in

a customizable concrete syntax in addition to the corresponding abstract

syntax. The proposed solution is demonstrated in a running example.

Acknowledgements
The work in this thesis has been conducted by myself, but it would not be

possible without the invaluable patience and guidance from my supervisor,
Yngve Lamo. I would also like to send my greatest appreciations to Juan
de Lara, which was my co-supervisor during my stay at the Autonomous
University of Madrid. Both the supervision of Yngve and Juan has been of
great help to establish the formularization of deep metamodelling in this
thesis. I would also like to thank Florian Mantz and Xiaoliang Wang for
providing help on the technical side of things.

A special thanks to my good friends Peninnah, Fabien and Uma for proof-
reading and my parents Oddvar and Lillian for encouraging me to keep
working.

Bergen 1. June 2014

CHAPTER1
Introduction

1.1 Motivation

Since the very beginning of software engineering, there has been a con-
tinous focus on developing software that is of high quality and low cost.
Early programming languages such as FORTRAN [1] for instance, made it
possible to shield the programmer from writing machine code. Some years
later, more expressive object-oriented programming languages (OOP) ap-
peared [2]. It was now possible for developers to wrap similar concepts
into classes, and instantiate them as objects. Developers could also create
reusable class libraries, which made it easier to reuse concepts that had
been defined earlier. Developers could now reuse mature class libraries
of high quality and speed up the development process and provide soft-
ware of higher quality and a lower cost. However, this has in the later years
evolved into a complex web of frameworks. We can now see that large scale
systems might contain thousands of interconnected components, which in
turn adds up to an ever so increasing software complexity. It is also difficult
to correctly and optimally connect these components, and the potential
side effects can be difficult to predict and debug. [3]

A promising approach to overcome the increasing platform complexity of
frameworks, is the concept of Model Driven Engineering (MDE) [4]. MDE
involves the idea of creating domain models, meaning abstract represen-
tations of knowledge about the system rather than focusing on underlying
mechanisms such as algorithms. MDE is meant to increase productivity
and maximize compability between different platforms, as well as sim-
plifying the process of software design. Typically it has been common to
express domain models in languages such as the Unified Modelling Lan-
guage (UML) [5], but only in the process of gaining an overview of the
design as well as for documentation purposes. MDE aims at taking this one
step further by making the domain modelling a part of the programming
process by adding code generation [6]. MDE also aims at using the domain
models together with metamodelling, which is the concept of creating mod-
els based on models to raise the level of abstraction [7]. In addition to this,
MDE aims at including model transformation engines, model checking

1

Chapter 1. Introduction

mechanisms to prevent errors at an early stage and more [8]. However,
MDE does consist of a number of different research areas. In this thesis we
will only focus on metamodelling and its limitations.

Even though MDE facilitates many of the weaknesses of OOP through
domain models and metamodelling, there are still some major limitations
that are holding it back from being fully successful. We are only briefly
explaining these weaknesses in this section to facilitate the motivation for
this thesis, while a more thorough explanation is provided in chapter 3.
Figure 1.1 below, illustrates the three limitations as they were elaborated
by Atkinson and Kühne [9].

Plant

Tree

NorwaySpruce

Name

Name

NorwaySpruce

name

name

name

(a) Replication of concepts.

Plant

Tree

NorwaySpruce Object

Class

Metaclass

(b) Multiple classification.

Plant

Tree

NorwaySpruce

Clabject

(c) Classifier Duality.

F I G U R E 1.1: Limitations with traditional metamodelling.

The first limitation is the replication of concepts problem, which arises
from the need to redefine concepts multiple times. To be able to express
concepts across more than two metalevels, we have to redefine concepts at
each metalevel until we can use it (see fig 1.1(a)). The second weakness is
the multiple classification problem as seen in figure 1.1(b). The multiple
classification problem arises from the need to express both linguistic and
ontological classification of a model element. The third weakness arises
from the need to capture dual type-facets of certain model elements, such
as class and object.

To solve these three problems, we follow the definition of deep instanti-
ation as it was established by Atkinson and Kühne [9]. Deep instanitation
will make it possible to carry information across several metalevels. There
already exists tools with support for deep instantiation such as MetaDepth,
but this tool is only textual and not diagrammatic [10]. Modelling diagram-
matically means we are modelling by using a graphical representation of
the model. A textual model may be easy for a computer to read and gener-
ate code from, but from a human perspective it is often easier to imagine
a model in a diagrammatic environment. It is more natural for a human
being to create models that are more similar to real world objects, instead
of modelling based on a computer’s perspective.

2

Chapter 1. Introduction

1.2 Structure Of Thesis

This thesis is structured the following way:

Chapter 2 - Model Driven Engineering
This chapter provides background information of what the concept
of Model Driven Engineering means, along with some motivating
examples on the way.

Chapter 3 - Problem Statement And Methodology
In this chapter, we explain the current limitations with the approach
we presented in chapter 2, and provide some possible solutions to
these limitations. This chapter will set the stage for the rest of this
thesis by providing a problem description and the research method-
ology that will be used later in this thesis.

Chapter 4 - Comparison Analysis
This chapter consists of a comparison analysis of existing diagram-
matic tools such as the Diagram Predicate Framework, as well as
tools with support for deep metamodelling such as Metadepth and
Melanee. The results obtained from this comparison is used to estab-
lish a starting point for the implementation of a diagrammatic tool
for deep metamodelling.

Chapter 5 - Design and Implementation
This chapter consists of the design and implementation phase of
abstract syntax of the tool. This chapter presents the design and
implementation phase of the concrete syntax of the tool.

Chapter 6 - Demonstration
In this chapter we provide a demonstration of the final editor, illus-
trating both the abstract and concrete syntax of the editor.

Chapter 7 - Conclusion And Further Work
This chapter concludes the work that has been done in this thesis,
and provides some suggestions for possible further work.

3

CHAPTER2
Model-Driven Engineering

This chapter provides an introduction to the general situation in software
engineering today, and introduce model driven engineering. We are also
providing some motivating examples for using domain models over tradi-
tional general purpose models. We are presenting domain specific mod-
elling languages and explaining their abstract and concrete syntax. We will
also explain diagrammatic modelling and graph based modelling, and last
of all provide some examples of existing initiatives for MDE.

2.1 The Current Situation

Since the first computer programs were made, there has been a continuous
focus on developing software that is of high quality to low cost. Early pro-
gramming languages such as assembly and FORTRAN for example, came
to replace machine code with programming language constructs aimed at
shielding developers from writing complex machine code. Later on, OOP
arrived with a goal to raise the abstraction level and facilitate Application
Programming Interfaces (API) [11] to provide reuseable class libraries. By
developing reusable class libraries and application frameworks, the need
to reinvent common and domain specific services such as transactions, se-
curity and event notification was minimized [3]. Developers were now
shielded from complexities associated with earlier languages with the use
of OOP.

However, the process of reusing class-libraries has in later years evolved
into a complex web of interconnected components. A large scale system
such as .NET [12] and J2EE [13] contains thousands of interconnected
components and requires considerable effort to maintain. It is also difficult
to connect these components, and the potential side effects can be difficult
to predict and debug. In addition to this, since these platforms evolve
rapidly, developers are spending considerable amount of time porting code
to newer versions of the same platform or to different platforms.

As the platform complexity is increasing, we again see that the software
industry is reaching a complexity ceiling. Newer platforms has become
so complex that developers spend years trying to master their APIs, while
only ending up being familiar with a subset of the platform technologies

4

Chapter 2. MDE

out there. Another issue is that OOP languages requires the developer to
focus on underlying programming details, resulting in a loss of overview.
The result is that developers end up having a hard time maintaining focus
on conceptual relationships and overall system correctness. Therefore, the
main problems with OOP languages as we see them today, are:

• Platform complexity
• Ability to express domain concepts effectively

A promising approach to overcome these limitations are the concept of
Model Driven Engineering (MDE).

2.2 Model Driven Engineering

Model Driven Engineering aims at using Domain models to raise the level
of abstraction, such that modellers no longer needs to focus on under-
lying programming mechanisms such as algorithms or platform specific
design patterns. MDE is meant to increase productivity and maximizing
compability between different platforms as well as simplifying the process
of software design. Typically these domain models have been expressed
using General Purpose Languages (GPL) [3], but it has been argued that
it does not unfold the full potential of MDE as GPLs are often too generic
to express deeper application domain concepts and design. Therefore, a
Domain Specific Modelling Language (DSML) can be used to precisely
express these domains concepts effectively instead [14].

DSML’s can be categorized as prescriptive or descriptive, where a pre-
scriptive model is a model that provides a description of a system before
it is produced, and a descriptive model is a means of documentation of
the system. Traditionally DSML’s have been developed for documentation
purposes and to gain overview over the system before it is made. MDE
aims at utilizing both the descriptive and prescriptive side of modelling to
facilitate the best of both worlds. First by developing domain models, then
by generating code based on these models.

These domain models can also be used together with metamodelling,
which is the concept of creating metamodels restricting the instances of a
model. The definition of a metamodel suggests that modelling has occurred
twice: a metamodel and a model [7]. In OOP this has traditionally meant
that developers only have been concerned with two metamodels, type and
instance, Class and Object. However, the main concept of metamodelling
means that we can create models of models at as many levels as we like.
The basic idea behind it is to essentially create a type system in form of
a meta-hierarchy, where each model conforms to its metamodel and the
top most metalevel is the most abstract metalevel. By modelling DSMLs
using metamodels we will in turn gain a lower platform complexity, and
developers can more easily overcome the biggest disadvantages with cur-
rent OOP programming languages. However, we will go more into detail

5

Chapter 2. MDE

on the concept of metamodelling in section 2.4. To summarize, MDE aims
at:

• Making it easier for developers to focus on the problem domain itself
rather than writing error prone code,

• Increasing productivity,
• Maximizing compatibility between domains or systems by reusing

models,
• Simplifying the design process.

To describe how these advantages are possible, we will first provide a
description of how DSMLs are defined.

2.3 Domain Specific Modelling Languages

A Domain Specific Modelling Language (DSML) is a modelling language tai-
lored towards a specific domain of concern rather than for general purpose.
It aims at raising the level of abstraction and at the same time providing
modelling languages that is more closely related to the domain of concern.
As an example, consider that you are developing a system together with a
team. Each person working on the system may have different views and
perspectives. One colleague may look at the system from an engineering
viewpoint, another colleague may look at the same system from an enter-
prise viewpoint. A DSML will help in this process by making it possible
for each modeller to model the system such that the domain concepts of
concern are properly described.

For a language workbench to utilize DSML’s, it is necessary with a parser
that can parse an external representation of the metamodel in form of a
source file, into an internal representation. The internal representation can
then be visualized in an abstract or concrete syntax [15], either textually
or graphically depending on the tool. The abstract and concrete syntax of
DSML’s will be described in section 2.3.2, but first of all we present how
DSMLs are internally represented and persisted in a language workbench.

2.3.1 Internal Representation And Persistence

A modelling tool typically defines DSMLs by means of an internal repre-
sentation and a persisted model. Figure 2.1 on the next page illustrates
a simple overview of a persisted model that can be parsed to an internal
representation. The internal representation is handled by the tool and can
be edited in a textual or graphical user interface (or both).

6

Chapter 2. MDE

F I G U R E 2.1: Internal model and persistence to an external model.

The persisted model is simply a way for the computer to understand and
store the model. The internal model can be persisted in a external repre-
sentation in form of a file. A popular format for this is the XML Metadata
Interchange format (XMI), which is a XML format aimed at representing
models [16]. The idea is that a persisted model is being parsed into an in-
ternal representation, which can be represented in an abstract and concrete
syntax.

2.3.2 Abstract And Concrete syntax

Defining a DSML can be decomposed into three parts: the definition of
the abstract syntax, concrete syntax and the mapping between abstract
and concrete syntax. The abstract syntax basically defines the significant
parts of the model. It describes the relationships between concepts and
rules for well-formedness, and is parsed for model transformations such as
code generation or similar. The concrete syntax on the other hand, defines
how the model is presented to a modeller. The concrete syntax is simply
a visualization strategy for representing the model in a user friendly way.
The concrete syntax may be textual, graphical or a combination of these.
As an example, consider the abstract syntax representation of a simple sum
expression as illustrated in table 2.1 below.

2 plus 3

TA B L E 2.1: Abstract syntax of a sum expression.

The same expression can also be expressed in different concrete syntaxes
as illustrated in Table 2.2 on the next page. The concrete syntax is simply
different ways to express the abstract syntax. The aim with the concrete
syntax is to visually represent the abstract syntax in as intuitive way as
possible from a modellers perspective. The concrete syntax does not even
have to illustrate all the elements in the abstract syntax.The main idea
is that we need an abstract syntax to define the core concepts of DSMLs.
The corresponding concrete syntax is made to represent the models in as
intuitive way as possible from a modellers perspective.

7

Chapter 2. MDE

2 + 3 Infix
(+ 2 3) Prefix
(2 3 +) Postfix

The sum of 2 and 3 English language

TA B L E 2.2: Different concrete syntaxes of the sum expression.

The illustrated abstract and concrete syntaxes in table 2.1 and table 2.2
are however only expressed in a textual syntax. In this thesis, we argue that
a diagrammatic modelling approach is easier for humans to conceptualize.
In the next section, we therefore present the aforementioned abstract and
concrete syntaxes in a diagrammatic visualization instead.

2.3.3 Diagrammatic Modelling

As mentioned above, a DSML can be expressed in a textual or graphical
syntax (or both). The sum expression example we illustrated in Figure 2.1
is one example of a textual syntax for a DSML, but this expression can also
be expressed using a graphical syntax. The graphical syntax of a DSML is
often specified using diagrams, but the term diagram may have different
meanings depending on the context. In the oxford dictionary online [17],
the definition of a diagram is ‘A simplified drawing showing the appearance,
structure, or workings of something; a schematic representation‘. In software
engineering, a diagram is simply a structure based on a graph with Nodes
and Edges. In this thesis, we will use the term from software engineering to
define diagrams, and we also define that a graphical diagrammatic syntax
of a DSML is therefore defined using a graph based structure.

Diagrammatic models have already been adopted for use in modelling
tools for many years now, from flowcharts in the seventies to Petrinets [18]
as well as Computer Aided Software Engineering (CASE) tools [19] in the
eighties. The CASE tools can be seen as an early attempt to MDE as we
know it today, and focused on developing software methods and tools
that made it possible for developers to express software design with GPLs
such as business process models, dataflow diagrams and similar. The CASE
tools was widely researched, but had some notably problems such as poor
mapping between their graphical tools and the underlying platforms [3].
Secondly, the amount of generated code that needed to be generated was
of such an amount that it was difficult to grasp for the current technology
at the time. The CASE tools was therefore difficult to develop, debug and
maintain.

Nowadays, MDE applies lessons learned from what went wrong with
the CASE tools, and tries to facilitate these problems in a number of as-
pects. First of all by utilizing DSMLs to help specifying domain concepts
that otherwise would be difficult or impossible to model with general pur-
pose languages. Secondly, MDE aims at tailoring DSMLs together with

8

Chapter 2. MDE

metamodelling to match the domain specifications more precisely. MDE
also facilitates diagrammatic modelling directly at the domain of concern,
which helps flattening out the learning curve. It also ensures that a broader
range of perspectives of the domain requirements are fulfilled, such as the
perspective of a system architect and a web designer. Thirdly, MDE facili-
tates transformation engines for model transformations [20], constraints
to ensure correctness and perform model checking to prevent errors early
in the software lifecycle and much more. As a result it is much easier to
develop, debug and maintain models.

Earlier in this section we defined that a diagram is a structure based on
a graph. When modelling diagrams, we would by definition also model a
graph. This type of modelling is therefore most commonly referred to as
graph-based modelling.

2.3.4 Graph-based Modelling

In graph theory, which is the study of graphs, a graph is defined as a struc-
ture consisting of nodes and lines called edges connecting them. The formal
definition is that a Graph is an ordered pair G = (V, E), where V is a set of
vertices or nodes, and E is a set of edges or lines connecting them. Graphs
can be either directed or undirected, meaning whether the edges between
nodes in a graph has a specific direction or not. An undirected graph does
not have a specific direction, meaning the edges can go both ways. In a
directed graph, edges can only go a specific direction. Figure 2.2(a) be-
low, illustrates the sum expression example as an undirected graph. In the
case of adding two numbers together, it does not matter what direction
the edges has. 3 plus 2 has the same meaning as 2 plus 3. However, if we
subtract the two numbers instead, we see that 2 minus 3 yields a different
result than 3 minus 2.

2

3

plus

(a) Undirected graph.

2

3

minus

(b) Directed graph.

F I G U R E 2.2: An illustration of an undirected and a directed graph.

An undirected graph is often what we refer to as a simple graph. There
are many more definitions of graphs in the literature, e.g., directed multi-
graphs, attributes graphs etc. In this thesis we focus on directed multi-
graphs, which is a directed graph with added support for multiple edges

9

Chapter 2. MDE

between nodes. The formal definition of multi-graphs as it was taken
from [21] is:

Definition 2.1 (Graph). A graph G = (GN, GA, srcG, trgG) consists of a set GN of
nodes (or vertices), a set GA of arrows (or edges) and two maps srcG, trgG : GA −→ GN
assigning the source and target to each arrow, respectively. f : X −→ Y denotes that
src(f) = X and trg(f) = Y.

Earlier in this thesis, we mentioned that MDE aims at utilizing metamod-
elling together with DSMLs to lower the platform complexity and raising
the level of abstraction. In the next section, we present the concept of
metamodelling and its practical use in MDE.

2.4 Metamodelling

As briefly mentioned in the beginning of this chapter, the definition of a
meta-model suggests that modelling has occurred twice: a metamodel and
a model. Specifically, a metamodel describes the set of modelling constructs
available to the model, as well as rules for combining these to create valid
and well-formed models. A modeller defines a metamodel, which in turn
restricts the set of valid instances of the model.

As described in the beginning of this chapter, OOP has traditionally only
been concerned with two metalevels, Classes and Objects, types and in-
stances. MDE aims at using metamodelling with as many metalevels as
necessary, with the most abstract concepts at the top metalevel, and the
least abstract concepts at the bottom metalevel. Each model is an instance
of the metamodel adjacent above, and is specified by the corresponding
metamodel and its defined rules (e.g. constraints).

In OOP it has been popular to document software systems using lan-
guages such as the Unified Modelling Language (UML), which is a family
of languages used to describe different structural or behavioural aspects
in OOP. UML consists of class diagrams, use case diagrams and sequence
diagrams amongst others. Each UML diagram tailored for different docu-
mentation purposes. Traditionally MDE has also specified models by using
UML based languages as well. As an example, consider the two metalevel
hierarchy in figure 2.3 on the next page, which illustrates a two level
meta-hierarchy with a partial UML class diagram as its metamodel. The
metamodel is a directed graph with two nodes, Class and Attribute, and an
edge (attribute) between the Class and the Attribute. The model defines
the instances of the elements in the metamodel; in this case the nodes
Plant and Name and the edge (name) between them.

10

Chapter 2. MDE

Model

Metamodel
Class Attributeattribute

Plant Namename

InstanceOf InstanceOfInstanceOf

F I G U R E 2.3: A basic two-level metamodelling example

Figure 2.3 above illustrates a simplified form of a UML Class diagram
and its corresponding instances, modelled in a diagrammatic syntax. As
stated earlier in this thesis, a diagram is a graph, and the metamodel in
figure 2.3 is thereby modelled with a directed multi-graph. We also realize
that the model, which is an instance of the metamodel, also is a directed
graph in itself. Each instance in the model (node and edge) is typed by
the corresponding model element in the metamodel. If all instances in a
model is correctly typed by its corresponding metamodel, we say that the
model conforms to the metamodel.

To provide a formalism to the instance of relationship between an in-
stance and its type, we define the instance of relationship by graph homo-
morphisms. In graph theory, the definition of a graph homomorphism is
a mapping between two graphs in respect to their structure. In practice it
means it is a mapping between nodes and edges in a model to its corre-
sponding types in the adjacent metamodel above. The formal definition of
graph homomorphism as it was taken from [21] is:

Definition 2.2 (Graph homomorphism). A graph homomorphism ϕ : G −→ H
is a pair of maps ϕ0 : G0 −→ H0, ϕ1 : G1 −→ H1 which preserve the sources and
targets, i.e. for each arrow f : X −→ Y in G we have ϕ1(f) : ϕ0(X) −→ ϕ0(Y) in H,
such that the following diagram commutes:

X Y

ϕ0 (Y)ϕ0 (X)

ƒ

ϕ1(ƒ)

=

This gives a structure-preserving mapping between two graphs, in this
case between the instance graph and type graph. Through the definition
of metamodelling, we can define type-hierarchies in which the element in
the metamodel restricts and defines the possible model elements in the
corresponding model. In fact the model as illustrated in figure 2.3 above,
can be used as a metamodel itself, and modellers can instantiate a new

11

Chapter 2. MDE

model based on this metamodel. The result is a metamodelling stack of
metamodels, where the topmost metamodel defines the most abstract con-
cepts, and the bottommost metamodel defines the least abstract concepts
as illustrated in figure 2.4 below.

Model

conforms to

Model

Model

conforms to

...

Metamodel stack

conforms to

F I G U R E 2.4: A linear metamodelling stack

In traditional metamodelling, models at each metalevel conforms to the
metamodel adjacent above, which is often referred to as linear metamod-
elling. The topmost metamodel is usually defined by itself and is thereby
reflexive, meaning it conforms to itself. In traditional metamodelling, the
depth of a metamodelling stack is also fixed, most commonly numbered
from 0 at the bottommost metalevel and increasing upwards the metamod-
elling stack. The exact role of a metamodel and the instance of relationship
has however not been appropriately addressed yet, but there are two main
forms of defining the relationship between metamodels; loose metamod-
elling and strict metamodelling.

2.4.1 Loose Metamodelling

In loose metamodelling, we do not follow the principles that a model is an
instance of a metamodel, but instead we make instances of a type wherever
we find a need to mention them. Although this makes the initial specifi-
cation of the meta-hierarchy much simpler as one can create instances of
elements wherever its most natural to create them, it raises some other sig-
nificant problems. The first problem is that it will blur the level boundaries
between the metalevels - a model element is no longer determined by an
element in its metamodel. There is no precise meaning to the instance-of
relationship either, and all kinds of relationships can by definition cross
the boundary between metalevels. Instead of having a well-formed and
structured meta-hierarchy we will end up with a web of complex intercon-
nections between different metalevels. The metalevels will instead work
as a packaging mechanism for defining common features. This is a good
thing in itself as grouping common features into the same package has
long been established, but the instance-of relationship not only becomes

12

Chapter 2. MDE

confusing, it is also misleading. Defining that a model is an instance of a
metamodel, while the same time defining that an element may not even
be classified by an instance-of relationship simply provides a misleading
meta-hierarchy. The result is that the complexity of relationships between
elements is simply too high.

2.4.2 Strict Metamodelling

Strict metamodelling in contrary to loose metamodelling, means that if
a model is an instance of a metamodel, every modelling element is an
instance of exactly one element in the metalevel above. This means that
in strict metamodelling, if a relationship crosses the boundary between
metalevels, one holds on to purely instance-of relationships and not by any
other type of relationship like those that might occur in loose metamod-
elling. It is of utmost importance to define that crossing the boundary of a
metalevel is synonym to an instance-of relationship to maintain the concept
of metamodelling. Otherwise we would no longer have a multi-hierarchy,
but it would collapse to a single level [9]. We have therefore decided to
focus on strict metamodelling to maintain a consistent and well-defined
meta-hierarchy. The formal definition of strict metamodelling is:

Definition 2.3 (Strict Metamodeling). In an n-level modeling architecture, M0,
M1, . . . , Mn-1, every element of an Mm - level model must be an instance of exactly
one element of an Mm+1 - level model, for all 0 ≥ m <n - 1, and any relationship
other than the instanceOf relationship between two elements X and Y implies that
level(X) = level(Y).

When it comes to defining the top-level metamodel however, one of the
most widely adopted approaches is OMGs Meta-Object-Facility (MOF) [22],
which is discussed further in the next section.

13

Chapter 2. MDE

2.5 Meta-Object-Facility

In MDE, the top-level metamodel has typically been defined by the Meta-
Object-Facility (MOF), which is a standard originally made by the Object
Management Group (OMG) to provide a type system for the CORBA archi-
tecture and a set of interfaces to create new types and to edit the created
types [23]. The intention with MOF is to create a standardized way to
describe data about models, and can be illustrated as a four-level meta-
hierarchy such as in figure 2.5 below [24].

M1Model

Metamodel

Meta-

metamodel

M2

M3

Instance M0

conforms to

conforms to

conforms to

MOF

UML / DSML

User Model

Instances

conforms to

F I G U R E 2.5: OMGs four-level meta-hierarchy.

Figure 2.5 above, illustrates OMGs four-level meta-hierarchy (M3 to M0).
In this hierarchy, models conform to the metamodel of UML, and metamod-
els conform to MOF. MOF is the topmost model, and is thereby reflexive
and conforms to itself. OMGs four-level meta-hierarchy is currently one of
the most popular practices, and OMG has currently defined two variants
of MOF:

1. EMOF for Essential MOF
2. CMOF for Complete MOF

There has also been sent a request for a third viariant, SMOF (Semantic
MOF), but since EMOF is the most relevant variant in this thesis, we will
not discuss SMOF any further.

Figure 2.6 on the next page illustrates a class overview of the current
EMOF implementation. EMOF uses class notation to describe model ele-
ments in its instances, but the EMOF classes must not be confused with
OOP classes. EMOF classes is simply a means to define concepts, while OOP
classes are used to define objects. The classes in EMOF is however often
used to describe OOP metamodels such as UML diagrams.

14

Chapter 2. MDE

F I G U R E 2.6: EMOF classes (meta-metamodel).

We will not describe EMOF in great detail here, but by looking at fig-
ure 2.6 above, we can see that EMOF classes contains Property that in-
herits from MultiplicityElement. The idea with the multiplicity-element is
to make it possible to define multiplicity constraints of model elements
directly in the model. This kind of constraints is often referred to as struc-
tural constraints, meaning the constraints are modelled in the structure of
the metamodel. In other cases, structural constraints may not be enough,
and we need to define additional attached constraints to define more com-
plex restrictions on the model. Attached constraints are typically written
in textual constraint languages such as the Object Constraint Language
(OCL) [25], or programmatically in for example Java. The metamodel in
figure 2.7 below, illustrates an example of an instance of EMOF in form
of a UML Class diagram, along with a corresponding instance of the class
diagram with additional constraints.

ClassAssociation Property

upper : int

lower : int

PlantGardener plants
1..4

Structural constraint
context Gardener

inv: count(self.plants) < 5

Attached constraint

Metamodel
Model

F I G U R E 2.7: Structural and attached constraints.

15

Chapter 2. MDE

We have developed a model with a Gardener, and an association to a
Plant. To illustrate the restriction of gardeners to have a minimum of 1
plant and a maximum of 4 plants, we have added a structural constraint to
the Association named plants. We have also added an additional attached
constraint written in OCL, which is restricting Gardeners to have more than
4 plants. A language workbench could typically use constraints together
with model checking mechanisms to detect errors early in the software
lifecycle [3]. We will however not put a large emphasis on constraints in
this thesis, but rather focus the main structure of the metamodels instead.

In the next section we are presenting some of the better known existing
initiatives for MDE. However, we are only presenting a brief overview of
the initiatives here, while a more thorough overview of existing initiatives
can be found in [26].

2.6 Existing Initatives

One of the most popular approaches to MDE today is the Model Driven Ar-
chitecture (MDA) [3]. MDA was initiated by OMG in late 2000 to provide
a core foundation for model driven engineering tools, by providing a set
of guidelines for structuring models. MDA defines Platform Independent
Models (PIM), to provide a modelling platform that is namely platform
independent. By specifying PIMs, one can later through model transfor-
mations transform the model to a Platform Specific Model (PSM) that a
computer can run.

F I G U R E 2.8: A Model transformation example from a PIM to a PSM.

Figure 2.8 illustrates a platform independent model and generation of
a platform specific model by using model transformation. MDA can also
apply to other areas such as Business process modeling and is based on
multiple standards such as UML, MOF, the Object Constraint Language
(OCL) [25] and XMI. One of the most well-established implementations of
the MDA architecture is the Eclipse Modelling Framework.

16

Chapter 2. MDE

2.6.1 The Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) is an Eclipse based modelling
framework, at the center of Eclipse’s modelling technologies [27]. EMF
started as a MOF implementation, and has essentially become an open-
source code-generation facility aimed at making the design and implemen-
tation of a structured datamodel easier. Figure 2.9(a) below, represents
how Ecore fits into the MOF hierarchy as it is described in section 2.4.

M0 Instance

PIM

Ecore

M1

M2

conforms to

conforms to

conforms to

(a) Three-level meta-hierarchy.

M1 PIM

UML2

Ecore

M2

M3

InstanceM0

conforms to

conforms to

conforms to

conforms to

(b) Four-level meta-hierarchy.

F I G U R E 2.9: Representation of how Ecore fits the MOF hierarchy.

The top level defines the reflexive Ecore model [27] that conforms to
itself, and the M1 level specifies the platform independent model. If the
user want to specify the PIM using UML2, then the UML2 metamodel will
be placed between the Ecore metamodel and PIM as seen in figure 2.9(b).
EMF provides code generation facilities aimed at building tools based on
a Platform Independent Model, in other terms by specifying an PIM (see
figure 2.10 below). This PIM can be imported into a generator model,
which is used by EMF to generate the codebase for our tool.

F I G U R E 2.10: Definition of a platform independent model in EMF.

As we can see in figure 2.10, a PIM can be specified from a number of
sources. The PIM can be imported in form of a UML diagram, XML schema,

17

Chapter 2. MDE

it can be based on Java Interfaces or the user can specify it themselves. The
PIM can also be specified by an Emfatic model, which is a textual syntax
for ecore models. When the platform independent model is created, we
can import it to the generator model in EMF, which generates code for
our editor. The code-output generated from the generator model consists
of three packages: EMF.model, EMF.edit and EMF.editor, as illustrated in
figure 2.11 on the next page.

F I G U R E 2.11: Generator model in EMF.

EMF also provides tools for interoperability with other tools using a de-
fault serialization strategy based on XMI. This means basically what we
described in section 2.3.1, we can create instances where the internal rep-
resentation can be persisted (serialized) into an external model based on
XMI. Figure 2.12 below illustrates a simplified view of the metamodelling
hierarchy in EMF.

Editor

Editor

Metamodelhardcoded

Model

Instance

generate

create

create

conforms to

conforms to

F I G U R E 2.12: An illustration of a simplified view of the EMF metamodelling
hierarchy.

In EMF, the metamodel is hardcoded and used to define PIM’s. We can
import the PIM into a generator model and create the model. With the
model, we can create instances that represents the software of concern. The
eclipse modeling framework is today widely recognized, and has many sub-
projects. One of these sub-projects is the Diagram Predicate Framework
(DPF) workbench, which we present in the next section.

18

Chapter 2. MDE

2.6.2 Diagram Predicate Framework

The Diagram Predicate Framework (DPF) is a research project initiated
by Bergen University College (BUC) and University of Bergen (UOB) in
2006, involving several researchers from Norway and Canada [28]. DPF is
based on the Generalised Sketches formalism by Zinovy Diskin [29], and is
a graph based specification format aiming at formalizing concepts in MDE
through category theory and graph transformations [21]. It has previously
been branded as Generalized Sketches (GS) and Diagrammatic Predicate
Logic (DPL). However, DPF is largely inspired by categorical and First Or-
der Logic (FOL) [30], and aims at using these concepts to facilitate the
main concepts of MDE. In DPF, models are represented by diagrammatic
specifications in which a specification S = (S, CS : Σ) consists of an un-
derlying graph S along with a set of atomic constraints CS [21]. The graph
represents the underlying structure of the specification, and the atomic
constraints represents restrictions attached to this structure. DPF provides
a completely diagrammatic approach to MDE, and its graph-based nature
provides a foundation for one of the greatest strengths in DPF; it can be
used to develop patterns of other modelling languages such as UML class
diagrams, petri-nets, business process diagrams and many more.

2.6.3 The DPF Workbench

The DPF Workbench is the reference implementation of the Diagram Predi-
cate Framework, and represents a diagrammatic editor for the specification
of metamodels [28]. The editor is based on EMF, but is extended to support
an arbitrary number of metalevels along with code generation facilities.
The DPF workbench supports a fully diagrammatic modelling environment
based on the Graphical Editing Framework (GEF). Figure 2.13 below, il-
lustrates the current component architecture of the DPF Workbench.

GEF

The Eclipse Platform

EMF Xpand

DPF Diagram DPF Core
DPF Xpand

Metamodel

DPF Model Editor DPF Code Generator

DPF

Visualization

Editor

DPF

Signature

Editor

The DPF Workbench

F I G U R E 2.13: An illustration of the current architecture of the DPF Work-
bench.

As we can see from figure 2.13, the DPF Workbench is based on EMF with
GEF as visualization framework and XPand for code generation. The DPF

19

Chapter 2. MDE

Model Editor is the editor used to diagrammatically develop metamodels
in an abstract syntax, which can be further specified with signatures made
in the signature editor. There also exists a Visualization editor which aims
at providing the workbench with a customizable concrete syntax. We only
briefly mention the DPF workbench and its plugins here, while a deeper
insight into the DPF Editor and the Visualization Editor is presented in
chapter 4.

20

CHAPTER3
Problem Description And

Methodology

In this chapter, we are going to take a deeper look at traditional metamod-
elling. We start the chapter by pointing out some major limitations with
traditional metamodelling, along with possible solutions from the litera-
ture. Finally we present the problem description for this thesis and the
research method that will be used to overcome these problems.

3.1 Three Limitations

MDE provides the developer with tools that can lower platform complexity
and give the developer ability to express domain concepts in a more effec-
tive way than what is possible with OOP. We can now use domain specific
modelling languages together with metamodelling, apply constraints to
ensure the models fulfill the domain requirements and perform model-
checking routines to detect errors early in the software lifecycle. We can
run model to model transformations, model to text transformation for
code-generation and many more. While this is only a subset of the func-
tionalities a MDE tool could provide, there are still limitations with this
approach that needs to be addressed. Atkinson and Kuhne defined three
limitations with traditional metamodelling in [9], where modellers pref-
erence to strict metamodelling was the underlying reason for the three
limitations. The three limitations that needs to be addressed as a result of
strict metamodelling are:

1. The replication of concepts problem,
2. The multiple classification problem, and
3. The classifier-duality problem

The replication of concepts problem arises because only a shallow instan-
tiation mechanism is supported in traditional metamodelling. An instance
can only be created if its type is contained in the metamodel adjacent above,
and deep characterizations of model elements is therefore not possible in
traditional metamodelling. This means that certain model elements has

21

Chapter 3. Problem Description And Methodology

to be replicated for modellers to be able to access them further down the
meta-hierarchy. The second problem is the problem of multiple classifi-
cation, which arises from the need to classify elements with more than
one classifier. The third and last limitation arises from a need to capture
different meanings of certain model-elements. In OOP this can be the need
to capture classlike and objectlike properties of a model-element. These
limitations will be discussed in the forthcoming sections, starting with an
explanation of the role of metamodels and the reason modellers prefer
strict over loose metamodelling.

3.1.1 The Role Of A Metamodel

Even though significant research has been made in the field of model driven
engineering, there is currently little agreement on what form and what role
metamodelling should play [9]. For example as mentioned in section 2.4,
the instance of relationship between metalevels have not yet been fully
established. In loose metamodelling, the instance of relationship may not
even be the most common relationship between two elements. To illustrate
loose metamodelling in practice, we have created an example of a three
level meta-hierarchy using loose metamodelling in figure 3.1 below.

M2

M1

M0

Plant

Tree

instanceOf

instanceOf

instanceOf

Norwayspruce NorwaySpruce

Namename

name

name

F I G U R E 3.1: An example of a three-level meta-hierarchy using
loose metamodelling.

In loose metamodelling, both references and instance-of relationships
can cross the boundaries between metalevels, thus resulting in a complex
web of interconnected components. The metamodels are reduced to simply
a packaging mechanism for similar structures, and the meta-hierarchy col-
lapses in the process. Based on this, we see that it is of utmost importance
to define that crossing the boundary between metalevels is synonymous to
an instance of relationship. Otherwise we will no longer have a multi-level
meta-hierarchy, but the hierarchy would collapse into a single level [9].

The immediate solution to this problem is by using strict metamodelling
as we defined it in section 2.4.2. By defining strict metamodelling, we
thereby keep a consistent meta-hierarchy where it is evident in each case

22

Chapter 3. Problem Description And Methodology

what kind of relationship we are using. As we can see in figure 3.2 below,
only instance-of relationships are allowed to cross the boundary between
metalevels.

M2

M1

M0

Plant

Tree

instanceOf

instanceOfinstanceOf

NorwaySpruce NorwaySpruce

Namename

name

Name

instanceOf

name

F I G U R E 3.2: A three level meta-hierarchy using strict metamodelling.

A model element is an instance of exactly one element in the metalevel
adjacent above. If any relationship between two elements is any other
than an instance-of relationship, then both elements is at the same met-
alevel. It is also important to notice that an instance can only be created
from an element in the metalevel adjacent above. We can not define a
model element in M2, and then instantiate the model element in M0. In
other words, information can only be carried from one instantiation-step
to the next. This is commonly referred to as shallow instantiation. However,
even though strict metamodelling provides a well-defined definition of the
role of metamodels, some problems occur as a result of this. One of these
problems is the replication of concepts problem.

3.1.2 The Replication Of Concepts Problem

As an example, let us consider that we want to develop a meta-hierarchy
of Plants as the one we created in figure 3.2 above. If we want to model
that all sub-sequent instances of Plant should have a name, we realize that
it is most natural to specify the name on the Plant element in the top-
most metalevel. However, since traditional metamodelling only supports
shallow instantiation, it is only possible to specify requirements from one
metamodel to the next. To be able to specify that all Plants should have a
name, we have to re-instantiate the concept of name at each metalevel until
the bottommost metalevel. In terms of the Plant example, it means that to
be able to specify a name on NorwaySpruce, we have to re-instantiate the
name element at m1. If we want to specify a requirement across several met-
alevels, we have to replicate the element at each intermediate metalevel
until we reach the metalevel of concern. The limitation of not being able
to specify requirements across multiple metalevels leads to the replication
of concepts problem.

23

Chapter 3. Problem Description And Methodology

3.1.3 The Multiple Classification Problem

Traditionally, in OOP languages developers have only been concerned with
two metalevels, Class(M1) and Object(M0). This has worked fine as all
objects are in M0, and all classes are in M1 and makes for a distinct separa-
tion between the two classifiers. However, when a developer in MDE now
introduces additional metalevels, some problem occurs. One of these prob-
lems are the multiple classification problem. As an illustration, consider
the concepts in figure 3.3.

Plant

Tree

NorwaySpruce Object

Class

Metaclass

F I G U R E 3.3: Multiple classification.

This is the same concepts as described in figure 3.2 above, a hierarchy
with Plant at the top level, Tree in middle and NorwaySpruce on the bot-
tom level. As we have seen earlier, NorwaySpruce is an instance of Tree,
and Tree is an instance of Plant, but these concepts can also be classified
by a second classifier. As in OOP where we are modelling with Classes
and Objects, we see that NorwaySpruce in addition to be classified as an
instance of Tree, it is also an instance of Object and Tree is an instance of
Plant, but it is also an instance of Class. This is what we refer to as multiple
classification, which in short means that an element can be classified by
more than one type.

One of the more popular attempts to overcome this problem while at the
same time adhering to strict metamodelling is through the orthogonal clas-
sification architecture [31]. The principles of the orthogonal architecture
is to simply capture the two fundamental meta-dimensions and separate
them into an ontological and a linguistic meta-dimension. In figure 3.4 on
the next page, we have organized the Plant, Tree and NorwaySpruce con-
cepts in each their metalevels on the left side. These metalevels is referred
to as the ontological metalevels, each element is an ontological instance of
an element in the adjacent metalevel above. To the right in the figure we
have aligned the second classifications: Metaclass, Class and Object. These
classifiers are put in a single metalevel, the linguistic metalevel. In this
case, the classifiers are classifying the OOP oriented types of the elements,
determining whether an element is a metaclass, class or an object. This
metalevel can consist of other classifiers as well, depending on what type
of system we are modelling.

24

Chapter 3. Problem Description And Methodology

O2

O1

O0

Plant

Tree

ontological

ontological

NorwaySpruce

L0

Metaclass

Class

Objectlinguistic

linguistic

linguistic

instanceOf

instanceOf

F I G U R E 3.4: Two fundamental meta-dimensions -
Linguistic and Ontological.

Even though we at this point have enabled both ontological and linguistic
classification of model elements, it also means that a tool has to maintain
both the ontological metalevels as well as the linguistic metalevels. If a
developer wants to add new metalevels, new linguistic classifiers for these
elements has to be added as well. The result is that the number of met-
alevels are restricted by the number of linguistic classifiers available to the
modeller. For example if we want to add an instance of NorwaySpruce, we
have to add a new linguistic classifier as well, thus adding complexity for
the tool. However, by unifying linguistic elements of the same concept into
a single unified element, we no longer have to add new linguistic elements
if we want to add a new metalevel. The unification of linguistic elements
is described in greater detail in the next section.

3.1.4 The Classifier-Duality Problem

One way to overcome the problems of maintaining the linguistic classifiers
is by unifying the concepts into a single structural element [9]. Figure 3.5
on the next page illustrates the unification of Metaclass, Class and Object
into a single concept: Clabject. (CLAss + oBJECT). We see that Plant, Tree
and NorwaySpruce is all classified by Clabject. By unifying the classifiers
into a single element, we have now simplified the linguistic metamodel
and enabled an arbitrary number of metalevels. Since every ontological
element is classified by Clabject, tools no longer need to maintain the
linguistic metamodel.

25

Chapter 3. Problem Description And Methodology

O2

O1

O0

Plant

Tree

instanceOf

instanceOf

NorwaySpruce

L0

Clabject

instanceOf

instanceOf

instanceOf

F I G U R E 3.5: Unification of linguistic classifiers.

Even though tools no longer need to maintain the linguistic metamodel,
there are new problems arising because of the unification of the linguistic
classifiers. Looking at the unified element in figure 3.5, we see that the
Clabject can be classified as either a Class, Object or both. There is a need
to find a way to distinguish between the different types of the unified
elements. This is what we refer to as the classifier-duality problem.

3.2 Deep Instantiation

In section 3.1, we presented shallow instantiation as a major limitation in
traditional metamodelling, resulting in the replication of concepts problem
amongst others. Shallow instantiation is sufficient only when dealing with
two metalevels, type and instance, but it should ideally be enhanced for a
multilevel environment [32]. If we want to make statements about model
elements across more than two metalevels, we need to apply an alternative
approach. In this thesis, we will describe two different approaches to this:

1. Powertypes
2. Potency

The first approach is by specifying powertypes to force model elements
to be specified the way we want them to be, while the second approach
implements deep instantiation through potency. These concepts will be
described further in the following sections, starting with powertypes.

26

Chapter 3. Problem Description And Methodology

3.2.1 Powertypes

Powertypes was introduced by Odell [33] and is a keyword for a specific
stereotype in the Unified Modelling Language (UML) [5]. In UML 1.x, a
powertype is a classifier whose instances are children of a given parent.
In UML 2.x, the stereotype has been removed and is now indicated by
generalization as illustrated in figure 3.6 below.

O2

O1

O0

Plant

NorwaySpruce

instanceOf

PlantKind

name: String

name = NorwaySpruce

instanceOfpowertype

Tree

F I G U R E 3.6: Plant as a powertype.

The purpose of specifying Plant as a powertype of PlantKind is to enforce
that all instances of Plant inherits from PlantKind and thereby aquires the
requirements of PlantKind by inheritance. As seen in figure 3.6, we now
ensure that all instances of Plant in the meta-hierarchy has a name attribute,
no matter what type it is.

However, when adding new metalevels we need to ensure the proper
powertypes are added to the metamodel, thereby resulting in a more com-
plex solution than satisfactory. Secondly the tool have to support inheri-
tance as well, which we argue is a useful, but not strictly necessary feature
in metamodelling. The Powertype concept is a UML specific concept, while
metamodelling not only concerns UML diagrams. Metamodelling may con-
cern any type of model. We therefore argue that powertypes is not properly
addressing the need to allow deep instantiation. With powertypes we are
still working with shallow instantiation, but to achieve a more natural
solution we will introduce deep instantiation through potency as it was
presented in [9].

27

Chapter 3. Problem Description And Methodology

3.2.2 Potency

The second approach to allow deep instantiation is through the concept of
potency. Potency is simply an integer that is assigned to model elements,
and acts as a type of constraint used to specify restrictions on how many
sub-sequent metalevels a model element can be instantiated. When the
potency of a model element is set, its potency will be reduced by one for
each sub-sequent metalevel the model element is instantiated. Figure 3.7
below illustrates the Plant hierarchy with added potency to define deep
instantiation, visualized in UML Class diagram syntax.

O2

O1

O0

Plant 2

NorwaySpruce 0

Tree 1

name = NorwaySpruce
0

name: String 2

name: String 1

F I G U R E 3.7: Deep instantiation.

Traditional classes and attributes have a potency of 1 since they only can
be instantiated once, and traditional objects and slots have a potency of
0 since they cannot be instantiated any more [9]. As we see in figure 3.7,
there is no longer need for a PlantKind concept any more, since the name
attribute of Tree is forced as an instance of the name meta-attribute in
Plant. The same way we also see that the potency 1 name attribute of Tree,
is instantiated as slot of NorwaySpruce in O0. When the potency of an
attribute is 0, it is instantiated as a slot with a value as seen in figure 3.7
above.

By defining the Plant Clabject with a potency of 2, we restrict the in-
stantiation depth of the Plant to two metalevels below. When adding new
requirements such as the name attribute in Plant, the name attribute will
automatically be contained in the instance through the semantics of instan-
tiation. In fact all elements serving to specify some other element will be
contained in the instance as well. An attribute or method that is contained
in a clabject or any other specification of a model element will automati-
cally be re-instantiated in the instance through the semantics of instanti-
ation. In practice however, tools need proper mechanisms to ensure that
it is possible to access model elements across multiple metalevels. Rossini
(et.al.) proposed a solution of flattening the metamodels through a set of
replication-rules [34]. The concept of model flattening will be discussed
further in chapter 5.

28

Chapter 3. Problem Description And Methodology

Secondly, we may also notice how well the potency mechanism fits to
describe both requirements across multiple metalevels as well as multiple
classification. Through potency we realize that when for example Nor-
waySpruce (Clabject) is of potency 0, it will be classified as a Object, if its
potency is 1 it will be classified as an Class, if the potency is 2 it will be
classified a MetaClass and so on. The same principle works for any concept
with more than one type-facet. With potency we can now precisely define
the type-facet of any model element as well as gaining a precise definition
of how many sub-sequent metalevels an element can be instantiated.

The third aspect that arises from the definition of potency is that it is
becoming evident that there is a need to elaborate for how often model
elements are allowed to change their value down the meta-hierarchy. We
need to establish a definition of potency together with a specification of the
mutability of the model elements. The concept of mutability has been dis-
cussed in various sources in the literature. Atkinson and Kuhne described
the concept of single and dual fields, where a single field is a field in which
its value can only be set once, and dual field is a field where its value can
be set more than once [32]. In this thesis we will use the term mutability,
where we define whether a model element is mutable or not.

3.3 Linguistic And Ontological Instantiation

With added support for deep instantiation through potency in the model,
we can now use the linguistic elements and create ontological instances
with a user-defined potency. By looking at figure 3.8 below, we see that
the elements in the linguistic metamodel have an potency defined with an
asterisk symbol, which means it has an undefined potency.

O2

O1

O0

Plant 2

Tree 1

instanceOf

instanceOf

NorwaySpruce 0

L0

Clabject*

instanceOf

instanceOf

instanceOf

F I G U R E 3.8: Deep instantiation with linguistic and ontological typing.

All linguistic elements will by definition have an undefined potency, be-
cause the model element has not been instantiated yet, and we thereby

29

Chapter 3. Problem Description And Methodology

do not know the instantiation depth. The potency can be set whenever
the modeller feels it is necessary, so even ontological elements can have
an undefined potency. The main idea here is that if the potency is unde-
fined, it behaves the same way as in traditional metamodelling. As soon as
the potency is defined, deep instantiation comes into play. The linguistic
metamodel can be seen as the core language definition of the domain spe-
cific modelling languages we will define, it contains basic elements used to
build DSML’s with. This metamodel can also define core language libraries,
and thereby provide a strong core language foundation for domain specific
modelling languages.

Looking back at figure 3.8, we notice that by using a two dimensional
meta-hierarchy, we can add new linguistic elements at any ontological
metalevel, also referred to as linguistic extension. Linguistic extensions are
useful as a mechanism to add new requirements to metamodels further
down the meta-hierarchy than what could be foreseen at the top metalevel.
The two dimensional approach illustrated in figure 3.8 is the most common
approach amongst tools today, as we will describe in the next chapter. In
this thesis however, we also present an additional approach where we rear-
range the meta-hierarchy to a single dimensional hierarchy as illustrated
in figure 3.9 below.

L0

O2

O1

O0

Plant 2

Tree 1

instanceOf

instanceOf

NorwaySpruce 0

Clabject *

instanceOf

F I G U R E 3.9: An illustration of the example given in figure 3.8, rearranged
to a linear, one dimensional hierarchy.

Figure 3.9 illustrates the re-arranged meta-hierarchy into a single di-
mensional hierarchy. We have put the linguistic metamodels on top of the
ontological metamodels in the metamodelling stack, and through potency
we can still distinguish between dual facets of model elements such as
Clabjects. However, by looking at figure 3.9 we also realize that it is no

30

Chapter 3. Problem Description And Methodology

longer possible to create new Clabjects at metalevels below O2. If a mod-
eller would like to extend the hierarchy with for example a LumberJack
in O1, it would simply not be possible with the current single dimensional
approach. To adhere to strict metamodelling, we can only instantiate ele-
ments from the metalevel adjacent above. The linguistic elements were eas-
ily accessible using the two dimensional meta-hierarchy as it was described
in figure 3.8. However, as we now have rearranged the meta-hierarchy to a
linear hierarchy, it is no longer possible to linguistically extend ontological
metamodels. It is necessary to find an alternative solution to overcome this
problem.

One solution to this problem, is to replicate the linguistic elements at
each ontological metalevel except the bottommost metalevel as illustrated
in figure 3.10 below.

L0

O2

O1

O0

Plant 2

Tree 1

instanceOf

instanceOf

NorwaySpruce 0

Clabject *

instanceOf

Clabject *

Clabject *LumberJack 1

Carl 0

instanceOf

instanceOf

instanceOf

instanceOf

F I G U R E 3.10: Deep instantiation with linguistic extension.

Figure 3.10 illustrates the Plant hierarchy with the linguistic elements
replicated at each ontological metalevel except the bottommost metalevel.
It is not necessary to replicate the linguistic elements in the bottommost
metalevel, because the purpose is to create instances of the replicated
linguistic elements. If there are no more metamodels below, it is no need
to replicate the linguistic elements. Whenever we want to extend a model
linguistically, we simply create an instance of the replicated element. This
way we adhere to strict metamodelling and makes it possible with linguistic
extension at any metalevel, even with only a single dimensional meta-
hierarchy.

However, when adding references and connections between ontological
and linguistic model elements, we need to find an additional mechanism

31

Chapter 3. Problem Description And Methodology

that check conformance not on the metalevel adjacent above, but on the lin-
guistic metamodel instead. This means that to add a new linguistic node to
the metamodel, we can simply instantiate a replicated linguistic element
from the metamodel adjacent above such as LumberJack in figure 3.10.
However, to be able to add an arrow from the linguistic instance Lum-
berJack to the ontological instance Tree, we need additional mechanisms
that can traverse the metamodelling stack and check conformance on the
linguistic metamodel instead.

Even though a linear approach at first sight yields a more complex so-
lution than the two dimensional approach, we still argue for a linear ap-
proach, because it makes it possible to model both linguistically and on-
tologically. With a two dimensional approach, the linguistic metamodel
would be hardcoded into the editor and thus restricts us to only modelling
with a predefined set of linguistic elements. With a linear approach how-
ever, we can use a predefined structure such as a directed multi-graph to
model a linguistic meta-hierarchy, and then use the bottommost linguistic
metamodel to model an ontological meta-hierarchy. We can thereby use
the editor to develop linguistic templates, which can be used to define
ontological meta-hierarchies with linguistic/ontological instantiation and
linguistic extension.

In the next section, we briefly mention some of the better known initia-
tives with support for deep metamodelling. A more thorough description
of existing initiatives related to deep metamodelling can be found in [31].

3.4 Existing Initiatives

As stated earlier in this thesis, there currently does not exist any fully
diagrammatic tool for deep metamodelling. It does however exist a di-
agrammatic workbench for deep metamodelling called Melanee, which
is developed at the same institution as the concepts of potency and the
seperation of linguistic and ontological classification was elaborated [31].
Melanee does however only support modelling in a single view, which
means that all ontological metalevels is modelled in the same window. Sec-
ondly there also exist textual framworks for deep metamodelling such as
the Metadepth framework [35]. There exists frameworks such as Nivel,
which is a deep metamodelling framework based on the weighted con-
straint rule language [36]. Nivel does however lack constrains and action
languages, which hinders its use in practical MDE. There also exists an
extension of the Java programming language with support for deep meta-
modelling called DeepJava. DeepJave can however not be considered a
meta-modelling framework, but merely a programming language with sup-
port for an arbitrary number of metalevels [37].

32

Chapter 3. Problem Description And Methodology

3.5 Summary And Research Methodology

In this chapter, we elaborated that there is a need to overcome three major
limitations with traditional metamodelling. To do this, we are first of all
going to follow the approach of Atkinson and Kühne to implement deep
instantiation through potency [9]. However, whether it is best to stay with
a two dimensional hierarchy with deep instantiation, or to keep a linear
meta-hierarchy is a design question we will address later in this thesis. Sec-
ondly, we need to establish appropriate replication rules to ensure that for
example attributes are instantiated along with the clabject it is contained
in. Thirdly, we also need to implement mutability to allow restrictions on
the number of times a model element can change its value. Lastly, a more
human readable visualization of the models is needed as well.

In order to do this in practice, we have identified the design and creation
research strategy as the most suitable approach in this thesis [38][39]. The
design and research strategy is typically a problem solving approach, which
uses an iterative process involving five steps:

1. Awareness and recognition of the problem. This is already elaborated
for in this chapter and summarized earlier in this section.

2. Suggestion involves the step from recognizing the problem to offering
a tentative idea for how the problem might be addressed. In this
thesis we are going to perform a comparison analysis to establish
a starting point for the implementation of a diagrammatic tool for
deep metamodelling. The main goal with the comparison analysis is
to elaborate suggestions for how the problem might be implemented
in practice.

3. Development is where the suggestions for the problem we recognized
is implemented. The goal is to implement a diagrammatic editor that
overcomes the problems we recognized in step 1, with basis in the
established suggestions from step 2.

4. Evaluation is the step where the implementation is evaluated, and
where we assess the implementation we have done so far.

5. Conclusion is the final step where we summarize the results from the
previous steps, and tie up loose ends by presenting a list of further
work.

In practice, these five steps would most likely not be followed in a step-
wise fashion, but rather form an iterative cycle. The suggested solution in
step 2 leads to a greater awareness of the problem, which is then devel-
oped in step 3. By evaluating the solution we developed in step 3, we may
discover new and improved design suggestions for the problem, thus re-
peating the development phase. This way the Design and Creation strategy
aims at learning through making.

33

Chapter 3. Problem Description And Methodology

As mentioned earlier in this section, we have at this stage already defined
the problem we are going to focus on in this thesis. In the next chapter we
are therefore going to perform a comparison analysis to establish sugges-
tions for how we can overcome these problems.

34

CHAPTER4
Comparison Analysis

This chapter will analyse current tools that has overcome the three limita-
tions with traditional metamodelling as we described them in chapter 3,
and compare them with the DPF Editor. The main goals with this chapter
is to establish a starting point for the implementation of a diagrammatic
editor for deep metamodelling.

4.1 Expected Outcomes

This chapter will establish a starting point for how we can implement a
diagrammatic tool for deep metamodelling. We will analyse Metadepth,
Melanee and the DPF Editor with focus on:

1. The three major limitations with traditional metamodelling, and
2. The user interface and useability from a modellers perspective.

To do this, we will start by introducing two of the better known tools for
deep metamodelling, namely Metadepth and Melanee. Metadepth is a tex-
tual tool, while Melanee is a diagrammatic tool. By analyzing Metadepth
and Melanee, we aim at finding their strengths and weaknesses. We will
mainly focus on whether the tool has support for an arbitrary number
of metalevels, we will analyze how the tool has added support for deep
instantiation and we will look at how the tool has managed to seperate
between linguistic and ontological classifiers and supported linguistic ex-
tension. We will also analyse the user interface of each tool, and determine
its useability in terms of how intuitive the tool is to use from a modellers
perspective. Next, we will analyse the DPF Editor with basis on how it may
be possible to overcome the three major limitations with traditional meta-
modelling. We will also analyse the useability and diagrammatic syntax of
DPF to determine whether its a suitable approach for the implementation
of a diagrammatic editor for deep metamodelling or not.

35

Chapter 4. Comparison Analysis

If neither Metadepth, Melanee or DPF is a suitable approach for the
implementation, we will elaborate for whether we will analyse additional
tools, or whether we will use existing frameworks and plugins such as EMF.
In the end, the main objectives of this chapter is to establish a starting
point for the rest of this thesis, whether we can extend an existing tool or
whether we need to start from scratch.

4.2 Metadepth

Metadepth is as described earlier an textual tool for deep metamodelling,
with support for an arbitrary number of metalevels. Metadepth is being
built under the METEORIC project sponsored by the Spanish Ministry of Sci-
ence, and is mainly contributed by: Juan de Lara, Esther Guerra and Jesús
Sánchez Cuadrado from Universidad Autónoma de Madrid (UAM) [35].
Metadepth supports the use of the Epsilon language family [40], such as Ep-
silon Transformation Language (ETL) for model to model transformations
and Epsilon Generation Language (EGL) for code generation. Metadepth
hosts both Epsilon Object Language (EOL) and Java as constraint and ac-
tion languages to ensure model consistency and provide a richer set of fea-
tures used in model-checking. Metadepth also supports derived attributes,
meaning the value is not set by the user, but derived by a computed expres-
sion instead. Lastly, Metadepth features transactions, meaning the core
API calls are recorded in an event list such that previous events can be
reproduced, re/un-done and grouped into transactions. However, to elab-
orate for how Metadepth overcame the three limitations with traditional
metamodel, we will first analyse the linguistic metamodel in Metadepth.

4.2.1 The Linguistic metamodel

Figure 4.1 on the next page illustrates a simplified version of the linguistic
metamodel in Metadepth. The linguistic metamodel in Metadepth took
inspiration from MOF, but with added support for an arbitrary number of
metalevels, as opposed to only four in MOF. In Metadepth it is also added
potency to add support for deep instantiation as we described it in chapter 3.
As seen in figure 4.1, the uncoloured concrete classes are those a modeller
would typically instantiate (i.e. Model, Node, Edge, Field and DerivedField).
Under closer inspection of the linguistic metamodel in Metadepth, we see
that Clabject is an element very high up in the inheritance tree - basically
everything except from attached constraints is a Clabject. All elements in
the metamodel is based on Clabjects, taking care of the dual classification
of elements such as class/object classification. To do this, the Clabject has
a potency value, denoting the instantiation depth of the Clabject as well
as specifying classification type (Class / Object).

36

Chapter 4. Comparison Analysis

F I G U R E 4.1: MetaDepth’s linguistic metamodel, taken from [35].

As we see from figure 4.1, Clabjects have a potency attribute, which
means all elements except from constraints has potency. This means that
both Model, Node, Edge Field and DerivedField are all elements capable
of deep instantiation. The potency in Metadepht can be unlimited, such
that Clabjects can be instantiated with an arbitrary potency. We also see
that Clabjects has minimum and maximum multiplicity to control the
number of instances within a given context. Constraints can be attached
to Clabjects and have an attached potency as well as the possibility of
specifying on what event the constraint should be evaluated(i.e. when
creating or deleting the clabject) Metadepth also features both strict and
extensible modelling modes through the strict attribute in Clabject. By
specifying strictness, the modeller has control over whether or not the
ontological model can be linguistically extended or not.

Clabjects has one subclass, QualifiedElements, that can own Fields,
meaning Nodes, Edges and even the Model itself can contain Fields. The
Models are contained in a VirtualMachine. The Model can contain Nodes,
Edges, Fields, as well as nesting of Models inside other Models. It is
possible to import other models, nest models together, bind a model to
other Models and more. Nodes and Edges are Classifiers, which can form
general/specific hierarchies, meaning the concept of inheritance. Edges
are modelled in Metadepth with an input and a output field in each node
we want to create an edge between. The Edge itself has two or more
associations ends specified by the input/output fields in the Nodes we want
to create an edge between. The Nodes can also be specified as abstract to
support abstraction of nodes. Through these features it is possible to create
abstract nodes and inherit from abstract Nodes to simplify the models.

37

Chapter 4. Comparison Analysis

Through these mechanisms, Metadepth has overcome all the three major
limitations with traditional metamodelling. The next question is how the
user interface in Metadepth is organized.

4.2.2 The User Interface

Figure 4.2 below illustrates the plant example as it would be modelled in
metadepth. As we see, we begin by making an instance of a model with a
defined potency. Inside the model, we create instances of Node and Edges,
which each can have their own attached fields. By making instances of
nodes, we can define new concepts and link them together using edges.

Clabject

potency : int

Field

type

Ontological meta-hierarchy Linguistic metamodel

linguistic

ontological

ontological

«« from DataTypes »»

FieldValue

fieldValue

Model O2@2{

Node Plant@2{

name@2 : String;

}

}

O2 O1{

Plant Tree{

}

}

O1 O0{

Tree NorwaySpruce{

name = NorwaySpruce ;

}

}

Node

Edge

linguistic

linguistic

Model

contains

generalization

generalization

F I G U R E 4.2: The plant model as it would be modelled in Metadepth.

As we can see, Metadepth has support for deep instantiation of Nodes,
Edges, Fields, Derived Fields, Models and Constraints. It solved the dual
classification problem as well through potency and provides a rich set of
features for deep metamodelling. However, at the same time we see that it
only has a textual interface. This may not be any problem for programmers
that are used to develop in a textual interface, but the learning curve is
certainly higher than that of diagrammatic editors. The models can be
developed in external text-based tools, but even though the syntax is not
complicated, we argue that it still can not compete with diagrammatic
editors. For a humans it is easier to understand elements that is more
similar to real world objects, and this is to a large extent made possible
by using diagrammatic editors. Another aspect worth mentioning is that
Metadepth is a standalone application, and not based on EMF such as
for example DPF and Melanee as we will describe later. This means we
can develop models using a text-based modelling tool and run them in a
lightweight standalone console-application. However, it also means it wont
benefit from the broad range of plugins provided in EMF and its various
sub-projects.

38

Chapter 4. Comparison Analysis

4.3 Melanee

Melanee is a multi-level and ontology engineering environment, that has
support for both textual and diagrammatic modelling. Melanee was devel-
oped by the Software Engineering Group at University of Mannheim in
Germany, and supports model transformations, code-generation, querying
of model contents among others. Melanee is based on EMF for the sup-
port of visualization and enhancability of models. This is because of EMF’s
established metamodel technology and because EMF has a broad range
of plugins. Melanee is shipped with a default general purpose notation
with UML and Entity-Relationship (ER) diagrams in mind [24]. The dia-
grammatic syntax is extensible as well, which makes it possible to use both
the built-in general purpose notations as well as user specified domain
specific notations. Important aspects for this thesis is however Melanee’s
capabilities as an editor for diagrammatic modelling of deep elements.
To investigate how Melanee overcomes the three limitations with tradi-
tional metamodel, we will first analyse the top-level linguistic metamodel
in Melanee, also called the Pan Level Metamodel (PLM).

4.3.1 The Linguistic Metamodel

Figure 4.3 below illustrates a simplified version of the linguistic metamodel
in Melanee, where we have left out concepts such as Classification, Com-
plement, Equal, Inversion and Enumeration for illustration purposes.

Clabject

level : int

potency : int

Generalization

supertype subtype

Connection

Attribute

value : Expression

mutability : int

datatype : Expression

Feature

durability : int

children

Method

body : String

Parameter

name : String
body : Expressioninput

output

Artefact

Model

level : int

Element

name : String

OntologyOwnedElement children

children

destination

Entity

F I G U R E 4.3: Melanee’s linguistic metamodel, also called the Pan Level Meta-
model (PLM).

By looking at figure 4.3, we see that every concept in Melanee is based
on the Element class, where the Ontology class is the most general type
of Elements. As VirtualMachine is holding the Models in Metadepth, On-
tology is holding all Models In Melanee. Most of the times when users
are modelling in Melanee, the user will model at one ontology at a time.

39

Chapter 4. Comparison Analysis

However, it is also possible to model multiple ontologies at the same time.
Metamodels in Melanee is modelled in a single view only, where all meta-
models are open at the same time focusing on the whole ontology at a
time. From a useability point of view, this architecture works well as long
as the models are small, but as the models are growing bigger and bigger,
it is getting more and more difficult to get an overview of the system. In
this thesis, we will therefore argue that a single modelling view is not a sat-
isfactory approach for our implementation, but rather that a seperation of
the modelling process such that each model is modelled in a seperate view.
In the latter approach, a modeller will have full control over each seperate
model at a time, and other models can be opened and closed depending
on the modellers needs.

By looking at figure 4.3 on the previous page, we know that an Ontology
contains Models, and each Model represents a single ontological metalevel.
Each Model in Melanee contains OwnedElements, which is an Element
that is owned by another element, such as Entity, Connection, General-
ization, Attribute and Method. Entities and Connections are subtypes of
Clabject, where Clabjects is the main building blocks of PLM models [31].
A Clabject may contain Artefacts such as Attributes and Methods, but as
Clabject is a subtype of Artefact, a Clabject can also contain other Clab-
jects to model ontological composition. Clabjects also support Generaliza-
tion, which allows creating a general/specific hierarchy similar to that of
Metadepth. Looking at the Clabject class in figure 4.3, we also see that
Clabjects is the only element that can have potency defined. Clabjects will
however contain other Features such as Attributes and Methods, and their
potency will be defined by the Clabject it is contained in.

Features in Melanee is used to extend Clabjects with either data or be-
haviour such as Attributes and Methods. By looking at the PLM in figure 4.3,
we see that Features do not have potency, but have durability instead. This
means that the Features potency is determined by the Clabject it is con-
tained in, while durability means how many sub-sequent metalevels the
Feature will last. In Melanee, the durability of a Feature can be higher than
the potency of the Clabject it is contained in. This allows for the Features
to endure longer than the Clabject it was initially contained in. A Clabject
may inherit from a Clabject that has lower potency than the current Clab-
ject, and by providing durability, containing Features can possibly endure
even though the supertype can not be instantiated any more. The concept
of durability is however not within the scope of this thesis, but we will
discuss the concept further in chapter 7 under future work.

Attributes in Melanee is containing three fields: value, mutability and
datatype. The value and datatype of the Attribute will be stored in the
value and datatype fields. Mutability is another form of potency, namely
value potency as we introduced it in section 3.2.2. The mutability controls
whether or not attributes created from the attribute can change its value or
not. If the mutability of an Attribute is zero, it can not change its value but

40

Chapter 4. Comparison Analysis

must retain the value given upon creation. In other words, if the mutability
of an Attribute is zero, its value can not be changed at any subsequent-
metalevel.

Through these mechanisms, Melanee has overcome all the three major
limitations with traditional metamodelling. The next question is how the
user interface in Melanee is organized.

4.3.2 The User Interface

As the PLM defines the core structure of the modelling concepts in Melanee,
it was necessary to find a way to render these models in a diagrammatic
syntax. In Melanee, this is done by introducing the Level Agnostic Model-
ing Language (LML), which is used to visualize the multilevel models of
the PLM [31][41]. The LML provides concrete syntax visualization data
for every PLM concept, such as Ontology, Model, Entity, Connection, Gen-
eralization, Attributes and Methods.

Ontology
An Ontology is the outermost container in Melanee, containing Models
and visualized as a rounded rectangle with the name of the ontology at
the top.

Model
Models are the only elements that is possible to add directly under On-
tologies. The Models is forming a stack inside Ontologies, and contains
ontological metamodel elements.

Entity
An Entity in Melanee is representing the Nodes in the Model graph, and is
visualized the same was classes is visualized in UML Class diagrams. Enti-
ties is thereby a rectangle with three components; A header compartment,
Attribute compartment and a Method compartment.

Connection
To realize edges in the model graph, it is used Connection elements in
Melanee. To connect Entities to other Entities like Classes have references
in UML Class diagrams, Melanee has Connections to realize this feature. In
Melanee, Connections is modelled as Clabjects themselves, such that every
connection is the visual counterpart to association-classes in UML Class
diagrams. To distinguish between Entities and Connections, the shape of
a Connection is a flattened hexagon.

Attribute
Attributes is visualized as text-elements inside the attribute compartment
of Clabjects, illustrating name, datatype, value, durability and mutability.

41

Chapter 4. Comparison Analysis

Method
Methods is visualized much the same as Attributes, where the textual rep-
resentation is the method-signature.

Generalization
As in UML Class diagrams, Generalizations in Melanee is visualized as a
line between connected Clabjects (Entity or Connection)

Figure 4.4 below illustrates the Plant hierarchy as it would be modelled
in Melanee. The linguistic metamodel is simplified, and we have left out
Generalizations for illustration purposes.

Entity

potency : int

Attribute

O2

Plant 2

name : String 1

Tree 1

name : String 1

NorwaySpruce 0

name:String = NorwaySpruce 0

Ontological meta-hierarchy The Pan Level Metamodel (PLM)

linguistic

ontological

ontological

linguistic

linguistic

O1

O0 value : Expression

mutability : int

datatype : Expression

Method

destination

Model Ontology

Connection

Ontology

potency : int

destination

F I G U R E 4.4: The plant model as it would be modelled in Melanee.

To work out the multiple classification problem in Melanee, the orthog-
onal classification architecture is used as in Metadepth, with two seperate
meta-dimensions. The PLM is illustrated to the right in figure 4.4, which is
used when modelling the ontological metamodels to the left in the figure.
The visual representation to the left in figure 4.4 is represented by the
LML, where we start modelling by adding an Ontology that will contain
the Models we want to create. First we added a Model O2, with an Entity
presenting a Plant. In this example, we chose to define the Plant Entity
with a potency of two, and a name Attribute with a mutability of one. The
potency restricts the plant Entity to be instantiated a maximum of two
sub-sequent metalevels below, while the mutability defines that the value
of the name Attribute can be set only once. If the value of an attribute
is changed, the mutability will be decreased by one for each sub-sequent
metalevel the value is changed.

By analysing Metadepth and Melanee, we realize that both solutions has
overcome all three limitations as they were described in chapter 3. Both
tools support an arbitrary number of metalevels and deep instantiation.

42

Chapter 4. Comparison Analysis

We also found out that both Metadepth and Melanee has seperated the
linguistic and ontological metamodels into a two dimensional hierarchy of
models (orthogonal classification). However, while Metadepth focuses on
one model at a time, Melanee focus at one ontology at a time. In practice
this means that modellers will model at all ontological metalevels in a
single view. We argue that this is satisfactory for small models, but as the
size of the models are growing, so is the complexity of the ontology as
a whole. We will therefore focus on developing a solution that focus on
modelling on a model by model basis, rather than ontology by ontology.
Therefore, we will introduce the DPF Editor in the next section to elaborate
for whether DPF is a suitable starting point for the rest of this thesis or not.

4.4 Diagram Predicate Framework

This section will introduce the Diagram Predicate Framework and its sup-
ported plugins, starting with an investigation of the useability of the DPF
Editor as a possible approach for further implementation.

4.4.1 The DPF Editor

Looking back at DPF as we presented it in section 2.6.2, we recall that with
the DPF Editor, it is possible to diagrammatically develop models at an
arbitrary number of metalevels, viewing a single model at a time [42]. DPF
is based on a directed multi-graph, which makes it suitable for developing
patterns such as UML Class diagrams. We could use the DPF Editor to model
our linguistic metamodel, then replicate it down the meta-hierarchy. This
would result in a linear, single dimensional meta-hierarchy as we presented
it in section 3.3. Another solution to implement dual classification in the
DPF Editor is to alter the top-level metamodel in DPF, also called the core
metamodel, and add linguistic elements directly in the metamodel as in
Metadepth or Melanee. However, this means we will alter the graph such
that it may not even be a graph as we know it in DPF anymore. In turn,
the solution may render many of the sub-projects of DPF useless. In this
thesis, we will therefore argue that a linear approach to dual classification
is the most suitable approach in DPF.

Regarding deep instantiation and how we can implement it in the DPF
Editor, we will first have a look at the core metamodel in DPF as illustrated
in figure 4.5 on the next page. With inspiration from Metadepth, we can
add a potency integer to the graph-elements such as Node, Arrow and the
Graph itself. We can specify the default potency to -1 such that by default,
the elements will behave as in traditional metamodelling. As soon as the
potency of an element is defined, deep instantiation comes into play. We
can add programmatic constraints, restricting the model elements from
being instantiated any deeper than what is specified through the attached

43

Chapter 4. Comparison Analysis

potency. When potency is defined, the dual classification problem is solved
as well as we explained it in section 3.3.

Graph

name : String

Node

name : String

Arrow

name : String

target source

Specification

typeNode

typeArrow

GraphHomomorphism

typeGraph

Constraint

typeSpec

F I G U R E 4.5: A simplified illustration of the core metamodel in DPF.

Figure 4.5 illustrates the core metamodel in DPF without potency. After
adding potency, we will have overcome the three limitations with tradi-
tional metamodelling, and we only need to find a solution for the concrete
syntax for our editor. As we recall from Melanee, the PLM is specifying the
linguistic metamodel, while the LML is specifying the visualization of these
elements. The DPF Editor is structured in a similar way, where the core
metamodel is the main representation which is persisted in an external
representation in form of a .xmi file. To visualize the graph elements in
the abstract syntax it was created a diagram metamodel, which contains
visualization data for each element in the core metamodel, much like the
LML in Melanee. Figure 4.6 below illustrates a simplified version of the
diagram metamodel in DPF.

DGraph

DNode

size : EDimension;

location : ELocation;

node: Node

DArrow

lineStyle : Eint

arrow : Arrow

dTarget dSource

DSpecification

dType

dType
dType

dTypeDConstraint
DConstraintDNode

dConstraint

graph : Graph;

constraint : Constraint

spec : Specification;

F I G U R E 4.6: A simplified illustration of the diagram metamodel in DPF.

The main elements in the diagram metamodel, mainly the elements a
modeller would use when developing new metamodels is DNode, DArrow
and DConstraint. DNode and DArrow is visual representations of Node and

44

Chapter 4. Comparison Analysis

Arrow as they were defined in the core metamodel, and contains pointers
to the core element as illustrated in figure 4.6 above. With DNodes and
DArrows we can specify visualization data such as location and size of the
Nodes and Arrows. DConstraints on the other hand is used to visualize
Constraints on Arrows in the model. The diagram metamodel is thereby
representing the abstract syntax in DPF, and the diagram metamodel is
persisted in an external file in form of a .dpf file. The diagram file can then
be imported into the DPF Editor and visualized as illustrated in figure 4.7
below.

NodeFigure

ArrowConnection

Node

Arrow

FigurePolyLineConnectionlocation : Elocator;

size : Edimension;

node : Node;

DNode

lineStyle : Eint;

arrow : Arrow;

DArrow

dSource dTarget

name: Estring;

Node

name : Estring;

Arrow

source target

Core metamodel Diagram metamodel The DPF Model Editor

GEF

Internal representation

DPF Editor

Represented by Imported to Visualized as

F I G U R E 4.7: An illustration of the process of visualizing models in the DPF
Editor.

As we see from figure 4.7 above, the visualization in the DPF Editor is
built on the Graphical Editing Framework (GEF), which provides technol-
ogy to create rich graphical editors and views in EMF [43]. The diagram
metamodel is imported into the DPF Editor and parsed such that DNodes
and DArrows visualized with the appropriate structure. In the DPF Editor,
its currently only necessary to visualize two types of visualizations, Node
and Arrow. To visualize Nodes and Arrows, it was decided to extend the
Figure and PolyLineConnection classes in GEF to two classes; NodeFigure
and ArrowFigure. NodeFigure represents a DNode, is capable of rendering
the visualization attributes that is specified in the DNode, and visualized as
a rectangle. ArrowConnection represents a DArrow, its defined attributes,
and is visualized as an arrow.

However, the DPF Editor is only capable of modelling with Nodes and
Arrow with attached Constraints. There is no clear seperation between
an abstract and concrete syntax. Basically modelling with Nodes and Ar-
rows is the only possible syntax in the DPF Editor as we know it, and the
abstract syntax is therefore used as a concrete syntax as well. However,
by looking at figure 2.13 in section 2.6.3, we recall that there has been
developed a visualization editor by the previous master student [44]. This
visualization editor aims at providing the DPF editor with a concrete syn-
tax, which is also synchronized with the abstract syntax. This is done by

45

Chapter 4. Comparison Analysis

providing a third metamodel, the visual metamodel, which is a concrete
syntax representation of the abstract syntax in the DPF Editor.

4.4.2 The DPF Visualization Editor

While the diagram model in the DPF Editor is enough to specify the abstract
syntax, it was necessary to implement compositions of elements as well in
the concrete syntax. A new metamodel for the concrete syntax called the
visual metamodel was implemented, containing additional visualization
data and capability of nesting components. A simplified version of the
visual metamodel is illustrated in figure 4.8 below.

VArrow

isComposed : Boolean

VNode

isComposite : Boolean

VElement

F I G U R E 4.8: A simplified illustration of the current visual metamodel.

The concrete syntax metamodel consists of visualization data about the
abstract syntax. Currently the concrete syntax metamodel consists of a
VNode and a VArrow, which is used to represent the DNodes and DArrows
in the diagram metamodel. VNodes can specify a broad range of customiz-
able parameters such that the DNodes are visualized exactly as modellers
want. In the current visual metamodel however, VNodes has a isComposite
attribute, meaning whether the DNode is composite or not, or in other
words if the DNode can contain other DNodes or not. VArrows contains
a isComposed attribute, which means whether the DArrow is composed
inside a DNode or not. If a VNode is composite, the outgoing composed
VArrows and the target VNodes will be contained in the composite VNode.
Figure 4.9 below, illustrates a simple example of a clabject with containing
attributes and its mapping to the visual metamodel.

Composed : VArrow

isComposed = true

Composite : VNode

isComposite = true

Clabject@* : Node

Attribute@* : Node

Attribute@* : Arrow

mapping

mapping

Diagram metamodel Visual metamodel

F I G U R E 4.9: An illustration of a mapping between an instance of the dia-
gram metamodel and an instance of the visual metamodel.

By creating an instance of the visual metamodel as seen to the right in fig-
ure 4.9 above, we can specify different types of visualization elements for

46

Chapter 4. Comparison Analysis

the abstract syntax. In addition to specifying whether a DNode is compos-
ite or an DArrow is composed, we can also specify color, rounded corners
and similar, but these are left out for illustration purposes. When the in-
stance of the visual model is created, we can map the model elements in
the diagram metamodel to the model elements in the visual metamodel
as illustrated in figure 4.9. The idea is to first create concrete syntax visu-
alization elements in the visual metamodel, and then map the elements
in the diagram metamodel to its appropriate elements in the visual meta-
model. When the model elements in the diagram metamodel is mapped
to the visual metamodel, we can create instances of the visual metamodel
in the visualization editor. When creating the new instances of the visual
metamodel, the elements will be visualized as described in the metamodel
adjacent above. The way it works is that when modelling elements in the
visualization editor, we will create diagram elements, that is visualized as
specified in the visual metamodel in a concrete syntax. While modelling
the concrete syntax, the abstract syntax and its containing elements will be
automatically created, resulting in a synchronization between the diagram
and visual metamodel as illustrated in figure 4.10 below.

Visual

Metamodel

Visual

model

instanceOf

Diagram

Metamodel

Diagram

Model

instanceOf

Mapping

Synchronized

F I G U R E 4.10: An illustration of the current model mapping solution in the
visual editor.

As we see from figure 4.10 above, we can use the original DPF Editor to
develop new diagram metamodels in the abstract syntax, and we can open
the diagram metamodel in the visualization editor and continue editing
on the same model in the concrete syntax. Figure 4.11 below illustrates
modelling on both the diagram and the visual metamodel, which is syn-
chronized with each other.

Plant@2 : Clabject

name@2 : Attribute

Plant@2 : Clabject

name@2 : Attribute

name@2 : Attribute synchronized

Diagram model Visual model

F I G U R E 4.11: A concrete example of synchronization between the abstract
and concrete syntax as it was mapped in figure 4.9.

47

Chapter 4. Comparison Analysis

In the diagram metamodel as seen to the left in figure 4.11, we recall
that the visualization components for the model elements are based on
GEF. In the DPF Editor we have created NodeFigure and ArrowConnection
classes, representing the DNodes and DArrows in the diagram metamodel.
To visualize the visual metamodel, we additionally needed a structure that
allows nesting of components such as DNodes with containing DNodes.
To make this possible, it was decided to create a class hierarchy with the
following components as illustrated in figure 4.11 below.

VNodeFigure

CompositeVNodeFigure

CompartmentElement

CompartmentFigure

NodeFigure

ArrowConnection

Plant@2 : Clabject

name@2 : Attribute

The DPF Visualization Editor

Plant@2 : Clabject

name@2 : Attribute

name@2 : Attribute Abstract syntax

Concrete syntax

Figure PolyLineConnection

 The DPF Model Editor

Graphical Editing Framework (GEF)

F I G U R E 4.12: The structure of the visualization components in
the DPF Editor and the visualization editor.

To visualize VNodes that is not composite, meaning DNodes that does
not have any containing DNodes, it was decided to create a subclass of
NodeFigure called VNode as it is represented in the abstract syntax, named
VNodeFigure. VNodeFigure will inherit the same capabilities as a NodeFig-
ure, but with added visualization elements such as rounded corners, node
color and similar. To allow nesting of DNodes, it was created a subclass of
VNodeFigure named CompositeVNodeFigure, representing the composite
VNodes and how they are visualized. CompositeVNodeFigures contains
CompartmentFigures holding CompartmentElements. The Compartment-
Figures is a container of all instances of the composed DArrows and its
targets such as Attributes. Instances of Attributes will be contained in the
CompartmentFigure in each their CompartmentElement.

The current implementation of the Visualization editor is however cur-
rently not working properly, and has several bugs that needs to be fixed.
Many of the mechanisms in the visualization editor that is supposed to
build on the mechanisms in the model editor, is simply copy-pasted and
not working properly. Other bugs such references to the core metamodel
when there should be references to the diagram metamodel instead also
needs to be fixed. In order to extend the visualization editor to support
deep metamodelling, we first need to fix these bugs.

48

Chapter 4. Comparison Analysis

4.5 Summary

By analysing Metadepth, Melanee and DPF, we have established a starting
point for the implementation of a diagrammatic editor for deep metamod-
elling. The general nature of DPF, its ability to be used to model pattern
languages and its diagrammatic syntax made it clear that DPF makes an
excellent starting point for the rest of this thesis.

Metadepth Melanee DPF

Metalevels ∞ ∞ ∞
Deep Metamodelling Ø Ø
Linguistic/ontological instantiation Ø Ø
User Interface Textual Diagrammatic + Textual Diagrammatic
Framework Standalone EMF EMF
Platform JavaVM JavaVM JavaVM

TA B L E 4.1: Summary of the comparison analysis between
Metadepth, Melanee and DPF.

49

CHAPTER5
Design And Implementation

This chapter is structured into five parts, starting with an implementation of
the most basic solutions and building up more and more functionality later
on. Part one consists of the implementation of deep instantiation and dual
classification. Secondly we present the implementation of a code generator
to evaluate the solution we implemented in part one. We will continue
building on what we learned from the code generator to implement the
final solution of the abstract syntax for the editor. This chapter will end
with a presentation of the implementation of a concrete syntax so that the
editor is as intuitive from a human modellers perspective as possible.

5.1 Extending DPF - Part One

In the previous chapter, we established that DPF makes a good starting
point for a diagrammatic editor, it only needs to address the three limita-
tions as they were described in chapter 3. To address the three limitations,
we are first going to present an implementation of deep instantiation, and
then describe how we distinguish between linguistic and ontological clas-
sification, also called dual classification.

5.1.1 Deep Instantiation

As mentioned in the comparison analysis, we can start with adding a po-
tency integer to the Node and Arrow as well as the graph itself in the core
metamodel as illustrated in figure 4.5. We decided that to allow flexibility
and to make it easier to determine exactly what elements that is classi-
fied as deep, the best solution is to create a DeepElement interface with a
potency integer in the core metamodel. By making the Node, Arrow and
Graph classes in the core metamodel inherit from the DeepElement inter-
face, these elements will acquire the potency attribute through inheritance.
However, adding a potency integer alone is not enough to add support for
deep instantiation. We also need to define the behaviour of the potency,
such as decrementing it for each instantiation-step and to make sure it
can not be instantiated any further if the potency is zero. To support deep

50

Chapter 5. Design And Implementation

instantiation in DPF, we decided to first implement the DeepElement in-
terface and make Node, Arrow and Graph inherit from the DeepElement
interface as illustrated in figure 5.1.

Graph

name : EString

Node

name : EString

Arrow

name : EString

target source

Specification

typeNode

typeArrow

GraphHomomorphism

typeGraph

Constraint

<<Interface>>

DeepElement

potency : EInt

metalevel : EInt
typeSpec

F I G U R E 5.1: An illustration of the core metamodel in DPF with added po-
tency.

Secondly, we decided to decrement the potency at each sub-sequent
metalevel by decrementing the potency when a model element is added
from the palette in the editor. The potency attribute will be available in a
property sheet as illustrated in figure 5.2 below. The property-sheet is a
table, containing the properties of model elements such as name, potency,
attached constraints outgoing arrows and similar. By selecting a model
element, the properties of the selected model element will appear in the
property-sheet as illustrated in figure 5.2 below.

Model

Properties

Palette

Node

Arrow

Plant@2 : Node

String@2 : Node

name@2 : Arrow

name Plant
potency 2

F I G U R E 5.2: The current layout in DPF, with added potency.

Figure 5.2, illustrates a simplified view of the current layout in DPF. As
we can see, we are modelling in DPF by adding elements from the palette
to the right in the figure and placing them in the model window in the

51

Chapter 5. Design And Implementation

center of the figure. The elements in the palette are elements from the
metamodel adjacent above, which in this case is the hardcoded directed
multi-graph from the diagram metamodel as illustrated in figure 4.6. When
a model element is added, modellers can select the model element and
modify its properties in the property sheet as illustrated in the bottom of
figure 5.2 above. The figure illustrates editing of the Plant element with
a name attribute. We can set the potency to two in the property sheet,
such that instances of Plant will have a potency of one, and then instances
of instances of Plant will have a potency of zero. When the potency of a
modelling element reach zero, it will not be contained in the palette any
more.

In section 3.3, we recall that the potency of all linguistic model elements
has an undefined potency of -1, which is visualized in the model as an
asterisk symbol. If an element is denoted an undefined potency, it will be-
have as in traditional metamodelling, but as soon as the potency is defined,
deep instantiation comes into play. Each time a new element is added from
the palette, the potency will be checked for whether it is set or not. If the
potency is set, it will be decreased by one, and when its potency reaches
zero it will not be added to the palette any more. This way we make it
possible to define potency on model elements, and restricts modellers from
adding model elements that should not be added any more.

Even though we now have implemented deep instantiation, the imple-
mentation still needs improvements to address aspects of potency such as
mutability and model flattening semantics. With the current solution, the
modeller has to redefine model elements at each instantiation-step to be
able to access them further down the meta-hierarchy. In the case of adding
attributes in clabjects, we would in most cases prefer not to redefine the
attributes at each metalevel. It would be more intuitive to instantiate an
attribute at one metalevel, and specify its value further down the modelling-
hierarchy. The concept of defining when it is necessary to re-define model
elements to be able to access it further down the modelling-hierarchy is
often referred to as value-potency, and will be discussed further in sec-
tion 5.3.1. Before that, we are going to define linguistic and ontological
typing and linguistic extension.

5.1.2 Dual Classification And Linguistic Extension

One way to distinguish between the linguistic and ontological meta dimen-
sions is by modifying the core metamodel in DPF as seen in figure 4.5 with
added linguistic elements such as Clabject and Fields as in Metadepth or
Melanee. However, this means the basic structure will not be a graph as
we know it in DPF anymore, which may render many of the subprojects
of DPF useless. Another approach as discussed in section 4.4, is to keep
the original directed multi-graph, and use the editor as a pattern editor to
model a linguistic model instead. With this approach, we can rearrange
the linguistic and ontological metalevels in a linear fashion and replicate

52

Chapter 5. Design And Implementation

the linguistic classifiers as we described it in section 3.3. Interestingly, this
opens up for the possibility to use the model editor in two ways, firstly
as an editor for developing new linguistic metamodels, secondly by mod-
elling the ontological metamodels based on the linguistic metamodel. We
can replicate the linguistic metamodel at each metalevel and thereby sup-
port linguistic extension, and at the same time keep the original directed
multi-graph.

Figure 5.3 below illustrates deep metamodelling in DPF, with the top-
most metalevel hardcoded in DPF as a directed multi-graph. As we illus-
trated the original layout in figure 5.2, the directed multi-graph is at the
top-most metalevel and is the basic modelling elements in DPF. We can
use the editor to create a default linguistic metamodel such as a UML class
diagram, and replicate this metamodel at each ontological metalevel ex-
cept from the bottom-most metalevel as illustrated in figure 5.3 below.
The default linguistic metamodel will thereby always be at the default met-
alevel, which we decided to be at metalevel -1. Typically when we want to
add new model elements, graph homomorphisms are checked in the meta-
model adjacent above. However, when adding new linguistic elements, we
have to check the default linguistic metamodel instead. By setting the de-
fault linguistic metamodel at metalevel -1, it will be easier to traverse the
metamodelling stack since we know exactly what metalevel the default
metalevel is at.

Node@*

Arrow@*

Clabject@* : Node

DataType@* : Node

Attribute@* : Arrow

Reference@* : Arrow

Plant@2 : Clabject

String@2 : DataType

name@2 : Attribute

Clabject@* : Clabject

DataType@* : DataType

Attribute@* : Attribute

Reference@* : Reference

Tree@1 : Plant

String@1 : String

name@1 : name

Clabject@* : Clabject

DataType@* : DataType

Attribute@* : Attribute

Reference@* : Reference

Directed Multi-

graph

Default metamodel

(UML Class

diagram)

Ontological

metalevel 0

Ontological

metalevel 1

Editor hardcoded

create

Editor

create

import

Editor import

create

F I G U R E 5.3: An illustration of deep metamodelling in DPF,
with linguistic / ontological typing.

53

Chapter 5. Design And Implementation

By looking at figure 5.3, we also see that this solution leads to that in-
stead of having metalevel zero at instance level, we are now starting with
the topmost ontological metalevel as metalevel zero. The reason for this
is first of all because we do not necessarily know from the beginning how
many metalevels we will develop. Secondly, it makes for a better seperation
between linguistic and ontological metalevels. Setting the linguistic met-
alevels to negative integers and ontological metalevels positive integers,
makes it easier to separate between linguistic and ontological metalevels.
To implement such a solution, we need to:

1. Create a default linguistic metamodel such as a simplified UML Class
diagram,

2. Replicate the default linguistic metamodel at each ontological met-
alevel,

3. Add a new palette group in the DPF palette for the default linguistic
elements, and

4. Add mechanisms for distinguishing between ontological extension
and linguistic extension.

First of all, we need to create the default linguistic metamodel that mod-
ellers will use to create ontological instances from. As stated in chapter 4,
we will focus on UML class diagram notations as in the previous examples
in this thesis. Figure 5.4 illustrates a simple default linguistic metamodel
based on the directed multi-graph in DPF. The potency of the model el-
ements in the linguistic metamodel should not be set before it has been
ontologically instantiated, and it is therefore important that all linguistic
model elements have an undefined potency.

Clabject@* : Node DataType@* : NodeAttribute@* : Arrow

Reference@* : Arrow

F I G U R E 5.4: A simple default linguistic metamodel in DPF.

The next step is to replicate the default metamodel in each ontological
metamodel except from the bottom-most metalevel. By replicating the de-
fault linguistic elements, we can create instances of the default linguistic
elements at any adjacent metalevel below and thus keeping strict meta-
modelling.

Replication Rule 5.1 (Default Metamodel). For each metamodel at met-
alevel m where m >= 0, create replications of each linguistic element from
the metalevel above. This means if m= 0, then create instances of each model
element in metalevel -1 with the exact same name. If m> 0, create instances
of the replicated linguistic elements in the metalevel adjacent above with the
exact same name.

54

Chapter 5. Design And Implementation

Even though we have now made it possible to create linguistic exten-
sions, it is still not possible to connect ontological elements with linguistic
elements. There may be arrows between ontological nodes in the metalevel
adjacent above, but the replicated linguistic nodes is not directly connected
to any of the ontological nodes in the metamodel adjacent above. All ontolo-
gial nodes are however indirectly typed by a linguistic node, but to add an
arrow between an ontological node-instance and a linguistic node-instance,
we need to check the linguistic metamodel for conformance instead of the
metamodel adjacent above.

Clabject@* : Node DataType@* : Node

Reference@* : Arrow

Attribute@* : Arrow

Plant@2 : Clabject Clabject@* : Clabject DataType@* : DataType

Reference@* : Reference

Attribute@* : Attribute

Tree@1 : Plant LumberJack@1 : Clabject
Tree@1 : Reference

Node@*

Arrow@*

Default

metamodel

Directed

multi-graph

Ontological

metalevel 0

Ontological

metalevel 1

?

F I G U R E 5.5: An illustration of the Plant example where it is currently not
possible to linguistically extend ontological elements.

Figure 5.5 above illustrates that the current implementation of the model
editor does not support linguistic extension of ontological elements. It is
not possible to add a Reference arrow between LumberJack and Tree at
metalevel 1. Looking at metalevel 0, we see that there is no Reference arrow
between Clabject and Plant. However, Plant is indirectly typed by Clabject,
and as we can see in the default metamodel Clabjects contains References to
other Clabjects. Since both Tree and LumberJack is a Clabject, it should still
by definition be possible to add a Reference arrow between LumberJack and
Tree. To make it possible to connect ontological elements with linguistic
extensions, we therefore need a mechanism to distinguish whether we are
extending an element ontologically or linguistically. When adding a new
arrow between two model elements, we need to find out whether the arrow
we are instantiating is an ontological or linguistic instance. In practice, we
need to:

1. Iterate over the arrows in the default metamodel and add the names
of the linguistic arrows in a list, and

2. Check if the name of the arrow we instantiating matches any of the
names of the linguistic arrows.

55

Chapter 5. Design And Implementation

This means however that modellers are not allowed to create ontological
instances with the same name as any linguistic element, and a proper
naming constraint should be added to avoid confusion.

5.1.3 Summary

In the current solution we have implemented deep instantiation and dual
classification. We have created a default metamodel which acts as a linguis-
tic metamodel, and we have added support for linguistic extension. What
we need to do next, is to elaborate for appropriate mechanisms such that
we do not have to re-instantiate concepts at each metalevel to be able to ac-
cess them further down the meta-hierarchy. To allow instantiations across
several metalevels, we will elaborate for whether we need to flatten the
metamodel with a set of replication rules, or whether we will investigate
other possible solutions.

As briefly mentioned in section 3.2.2, it is also becoming apparent that
we need to elaborate for where and how often model elements are allowed
to change their value. We need to establish a definition of mutability along
with the definition of potency. When it comes to Attributes, the name of the
attribute should be kept consistent throughout the meta-hierarchy, which is
something the specification of mutability can take care of. We also realize
that there are no proper definition of datatypes yet. We currently have to
define these manually even though the datatypes should be accessed from
a predefined database such as the predefined datatypes in EMF.

To evaluate the current implementation and to elaborate suggestions
for how we can overcome the aforementioned problems, the next section
consists of the implementation of a lightweight code generator. The aim
with this code generator is to make it easier to find new solutions, and
maybe reveal unforeseen difficulties with the current implementation.

56

Chapter 5. Design And Implementation

5.2 Evaluation by Code Generation

Even though we now have implemented deep instantiation, dual classi-
fication and support for linguistic extension, the current implementation
does not support mutability and the definition of attributes and datatypes
should be improved as stated in section 5.1.3. To find a solution to these
limitations, we decided to implement a lightweight code generator that
transforms DPF models to Metadepth models. In addition to making it
easier to implement a solution for mutability and improve the definition
of attributes, we hope the code generator will help us reveal unexpected
bugs and discover new functionality that may benefit the current imple-
mentation. It is important to notice however, that the code generator is not
intended for use, but is rather as a proof of concept to make limitations
with the current implementation in DPF more apparent. To implement the
code generator, we will first explain the design and implementation, then
present the results of our findings.

5.2.1 Design And Implementation

To implement a solution that generates code based on DPF models, we need
a tool that can take DPF models as input and generate a text based language
based on these models. We remember from section 2.6.2 that DPF is based
on EMF, and we know that DPF models are structured based on Nodes and
Arrows which is persisted as a XMI file. Looking back at the DPF family
as it was illustrated in figure 2.13, we recall that it is already developed a
code-generator for DPF models, namely the DPF Code Generator developed
by previous master student Anders Sandven [45]. This code generator is
specifically created to generate code from DPF Models and would seem
like a natural choice for our code generator. The DPF code-generator can
take any DPF metamodel as source model and specify templates for each
metamodel that can produce target models.

In our case, the main structure of the models will have single target
structure in form of the linguistic metamodel in Metadepth. Since the
linguistic metamodel equivalent in the current model editor is the default
metamodel, we found it natural to create a mapping between the default
metamodel to the linguistic metamodel. However, this also means that
we need a code-generator that can take any source model that is either
directly or indirectly typed by the default metamodel. We need to take
a DPF source-model as input, find out what default element it is directly
or indirectly typed by and then generate Metadepth code based on what
default element it is. Therefore we need a code-generator framework that
is capable of traversing the metamodel stack up till the default metamodel
and then generate Metadepth code based on what linguistic element it
is. Unfortunately, the current implementation of the DPF code-generator
does not have support for such a feature. It is only possible to model on a
model to model basis, meaning we have to create new mappings for each
metalevel.

57

Chapter 5. Design And Implementation

The second aspect is that the new model editor now has added support
for deep instantiation through potency. The current DPF code-generator is
not able to access the potency, which makes it difficult to create Metadepth
code. It is possible to indirectly access the potency through utility classes,
but we argue that it is not a suitable approach for our code-generator.
The conclusion is therefore that as the DPF Code generator currently does
not support the possibility of traversing the metamodel stack and does
not provide access to the potency attribute, we decided that the current
implementation of the DPF code-generator is not suitable for our imple-
mentation.

Another possible framework we can use is Acceleo [46], which is an
open source code generator from the Eclipse Foundation. Acceleo is a prag-
matic implementation of the MOF Model to Text Transformation Language
(MOFM2T) standard for performing model to text transformations, and
can generate code from any kind of metamodel compatible with EMF to
any textual language. With Acceleo, we can define templates and gener-
ate code based on these. These templates can be specified exactly as the
code is generated in the editor, meaning it is possible to access the po-
tency attribute and traversing the metamodel stack. As we are also already
familiar with Acceleo and how it works, it makes a good choice for the
implementation of our code generator.

As a starting point, we first need to decide how to structure the templates
in Acceleo. We need to decide how we should map the elements in DPF
against the elements in Metadepth. By analysing the linguistic metamodel
in Metadepth, we decided the following mapping as illustrated in figure 5.6
below:

Clabject

potency : int

Field

type

«« from DataTypes »»

FieldValue

fieldValue

Node

Edge

Model

Clabject@* : Node

DataType@* : Node

Attribute@* : Arrow

Reference@* : Arrow Node

target source

typeNode

typeArrow

typeGraph

Default Metamodel DPF Linguistic Metamodel Metadepth Linguistic Metamodel DPF

Specification

metalevel : EInt
typeSpec

Arrow

<<Interface>>

DeepElement

Graph

potency : EInt name : EString

name : EString

F I G U R E 5.6: Mapping between the linguistic metamodel in Metadepth as
seen in the centre, with the core metamodel in DPF to the right and the default

metamodel in DPF to the left.

As we can see in figure 5.6 above, we have the linguistic metamodel in
Metadepth in the centre of the figure, with the core metamodel in DPF

58

Chapter 5. Design And Implementation

to the right. Elements such as potency and graph in the core metamodel
in DPF is mapped to the model element and potency under Clabject in
Metadepth. On the left side of the figure, we have the default linguistic
metamodel in DPF, where we have mapped the Reference arrow to Edge,
Clabject to Node and Attribute to Field. The whole graph consisting of all
the elements in a metamodel is equivalent to a model in Metadepth, and
the model itself, or the graph in DPF is mapped to a Model in Metadepth.

To be able to do this in practice, there are some factors we need to
be aware of. In terms of Associations, it is in DPF simply modelled as a
Reference arrow, while in Metadepth it is necessary with a field in the
source-node and target-node, and an edge connecting them with one an-
other. When it comes to attributes, in DPF the name of the attribute will
be at the Attribute-arrow and the datatype on the DataType-node, as in a
Entity-Attribute-Value model. When it comes to assigning default values to
attributes, it is possible in metadepth at any metalevel, but in the current
implementation in DPF, it is only possible to specify the value of an attribute
when potency is zero, as the value is being set on the DataType-node. As
a result of this, we decided to create the templates based on algorithm 1
below:

for each DPF metamodel, starting with the bottom-most metamodel and traversing the metamodels till we
reach the topmost metamodel do

for each Clabject do
generate a Node header with the following body:
for each Attribute do

generate a Field for the attribute;
end
for each incoming Reference do

generate a Field for the incoming reference;
end
for each outgoing Reference do

generate a Field for the outgoing reference;
end

end
for each Reference do

generate an Edge with source and target based on the reference Fields in the Clabjects;
end

end

Algorithm 1: Code generation algorithm used to generate code from DPF
models to Metadepth models

By creating templates in Acceleo based on the parameters described in
algorithm 1 above, we can input the DPF metamodels, starting with the
bottom-most metamodel. We will then iterate over the Nodes in the bottom-
most metamodel in DPF and check the name of the Node if its Clabject or
not. If its a Clabject, the algorithm will check its outgoing Arrows and their
names, generating its corresponding Attributes and Reference fields. When
all the Clabjects is generated, the algorithm will iterate over the Arrows
in the DPF metamodel, checking its names if its a Reference or not. If its
a Reference, we will generate its corresponding Edges in Metadepth. As
briefly mentioned in section 4.2, it is possible to import metamodels in
Metadepth, and therefore we will add an import statement on the top of
each Metadepth model, loading the adjacent metamodel above. This way

59

Chapter 5. Design And Implementation

the generator will start by generating code from the bottom up, and when
all the models are generated, the bottom-most metamodel in Metadepth
can be loaded, while the rest of the models are loaded automatically.

Figure 5.7 below illustrates the results from the code-generator with the
DPF source-models to the left and the generated code to the right.

Plant@2 : Clabject

String@2 : DataType

name@2 : Attribute

Tree@1 : Plant

String@1 : String

name@1 : name

NorwaySpruce@0 : Tree

NorwaySpruce@0 : String

name@0 : name

LumberJack@1 : Clabject

String@1 : DataType

name@1 : name

Carl@0 : LumberJack

Carl@0 : String

name@0 : name

cutDown@1 : Reference

cutDown@0 : cutDown

Model M0@2{

Node Plant@2{

name@2 : String;

}

}

load M0

M0 M1{

Plant Tree{

inLumberJack : LumberJack[*];

}

Node LumberJack@1{

name@1 : String;

outTree : Tree[*];

}

Edge cutDown(LumberJack.outTree, Tree.inLumberJack)@1{}

}

load M1

M1 M2{

Tree NorwaySpruce{ name = NorwaySpruce ; }

LumberJack Carl{ name = Carl ; }

cutDown(Carl, NorwaySpruce);

}

DPF source-models Generated Metadepth models

F I G U R E 5.7: An illustration of the DPF source-models to the left and the
generated Metadepth models to the right.

As we can see, we started the code generation by iterating over the
bottommost metalevel in DPF as seen to the bottom left in figure 5.7 above.
As the code generator is reading the potency of the model elements to
be zero, it produces Metadepth code accordingly. When potency is zero,
the fields in Metadepth will have their values set and the Edges will be
instantiated with its appropriate syntax as seen to the bottom right in
figure 5.7. The code generator also puts a line of code before the model
code, telling Metadepth to load the metamodel adjacent above such as M1.
The Models in DPF does currently not have a name, so the Model names
in Metadepth is set based on the number of metalevels in the loaded meta-
hierarchy, which in this case is three. When the bottom-most metamodel is
generated, the code geneartor will traverse up the DPF metamodel stack to
the metamodel adjacent above. By following this process till we reach the
top-most ontological metamodel O0, the generator will output Metadepth
code as illustrated to the right in figure 5.7. The bottom-most metamodel
in Metadepth can then be loaded into Metadepth, while the metamodels
adjacent above will be loaded automatically through the load statement.

60

Chapter 5. Design And Implementation

As this section has elaborated a solution for the code generator, the next
section will analyse the results and present some possible solutions for
improvement of the current implementation of deep metamodelling in the
model editor.

5.2.2 Results And Possible Improvements

Generally the code generation from DPF models to Metadepth models
went straight forward except from some minor difficulties, such as making
a proper definition of Attributes and its DataType and the syntax of Ref-
erences. As the current implementation of the default metamodel in DPF
only concerns Clabjects, Attributes and References, this section will only
focus on the limitations of these concepts. Language dependent factors
such as proper naming and additional features will not be mentioned in
great detail here, but elaborated for in the conclusion as possible further
work instead.

Model
The current definition of metamodels in DPF is defined by the Graph it-
self. Currently the Graph has potency, but Graphs does not have proper
naming. The Graph class has a name attribute, but this is not implemented
in practice. When analysing Metadepth we also realized that a feature of
importing external models could be useful in the future along with bind-
ing models together and relate metamodels at different metamodels. Also
the definition of strict and extendible modes for linguistic extension could
enhance the definition of deep metamodelling in DPF in the future. These
features is however currently outside the scope of this thesis, and will be
discussed as future work instead.

Clabject
When investigating Nodes in Metadepth, we realized that properties such
as abstract Nodes and added support for Generalization should be dis-
cussed as added features in DPF in the future. These properties will not
have a high priority, but will be discussed later in this thesis as the DPF
Editor is reaching a more mature state.

Attribute
The current implementation of Attributes as we see in the default meta-
model is based on the Entity-Attribute-Value model, as illustrated in fig-
ure 5.8 below.

Entity : Node Value : NodeAttribute : Arrow

F I G U R E 5.8: The Entity-Attribute-Value model, modelled in the DPF Model
Editor

61

Chapter 5. Design And Implementation

This means that in the default metamodel in DPF, an Attribute consists
of a Clabject with an outgoing Attribute Arrow pointing at a Node contain-
ing the value of the Attribute. In metamodelling, this means we will first
define the DataType of the Attribute, then instantiate it with its value. This
solution works fine as long as we are only concerned with two metalevels,
but as soon as we add intermediate metalevels the limitations of this ap-
proach is becoming more apparent. While creating the code-generator for
Metadepth, it was becoming clearer that a proper naming constraint should
be added on Attributes. In the current implementation it is possible to set
different names of the Attributes at each instantiation step, when it should
rather be kept consistent. This can be solved through mutability and setting
the mutability of Attribute names to 1. This way, the name of the Attribute
can only be set once, and the mutability will act as a constraint that ensures
a consistent name throughout the modelling hierarchy.

When modelling the Plant hierarchy, it was also becoming more appar-
ent that it is currently not possible to ensure specifications across multiple
metalevels. If we want to specify a name attribute on Plant, we currently
have to re-instantiate it at each metalevel until the metalevel of concern.
Otherwise it would not be possible to instantiate the attribute, since strict
metamodelling dictates that the instance of relationship crosses the bound-
ary between two metalevels only. To overcome this limitation, we need to
develop a solution that can automatically re-instantiate requirements at
intermediate metalevels. To implement such a solution in practice, we can
follow the replication rules as Rossini (et. al.) defined it [34] [47]. This
way, the containing attribute will automatically be replicated, following
the semantics of instantiation.A more thorough explanation of how this is
done in practice will be presented in section 5.3.2.

Other limitations with the current definition of Attributes include that
currently we have to define DataTypes manually, when they ideally should
be defined from a predefined storage of standardized datatypes such as
EMF instead. This can be made possible by extending the current directed
multi-graph to an E-Graph [48]. In practice, this means we keep the cur-
rent graph, but each element will have the possibility of an added attribute
in form of a DataNode. With an added DataNode defined in the core meta-
model in DPF, we can access predefined DataTypes that is predefined in
EMF. Through the implementation of DataNodes, we also realize that it
becomes easier to define OOP properties such as visibility of attributes
and similar. The implementation of the E-Graph along with the formal
definition will be presented in section 5.3.3.

Reference
In Metadepth it is possible to add Fields to Edges, but the current imple-
mentation of Associations in DPF is made up of a Reference arrow only.
This solution yields a simple model of situations where Attributes are not
needed on References, but on the downside it means to be able to model

62

Chapter 5. Design And Implementation

compositions of Nodes we would have to add another type of Arrow, or
otherwise investigate alternative solutions such as using Nodes as Refer-
ences instead of only an Arrow. A third solution is by modelling References
by using an E-Graph. By adding attributes to the Reference Arrow, we
can easily make it possible to define properties such as composition of
Nodes. In Metadepth it is also possible to define properties such as ordered
and unique on Edges. This can be made possible as well by extending
the current graph to an E-Graph as we will explain in greater detail in
section 5.3.3.

Other Possible Extensions
Methods is a central concept in UML Class diagrams, and we are therefore
adding support for this in the default metamodel. We will also need to add
enums, but this will be elaborated under future work.

5.2.3 Summary

By developing a code-generator and transforming DPF models to textual
Metadepth models, we have revealed limitations with the current approach
as described earlier in this section. Currently we still have to re-instantiate
Attributes to be able to access them further down the meta-hierarchy. The
semantics of instantiation states that containing Attributes will be instan-
tiated as the Clabject is instantiated, and to make this possible in practice,
we will implement a set of replication rules for Attributes.

Secondly, we revealed that under certain situations the value of model
elements should not be allowed to change such as the name of an attribute.
To allow restrictions on how when the value of model elements can change,
we will introduce the concept of mutability.

Thirdly, to make it easier to define DataTypes amongst others, we will
extend the directed multi-graph to an E-Graph.

5.3 Extending DPF - Part Two

By implementing the code generator, we made it clear that the current
implementation of the model editor can specify the instantiation depth of
model elements, but for example it is currently not possible to instantiate
a model element at metalevel 2 and instantiate it at metalevel 0. We cur-
rently still need manually to re-instantiate model elements at intermediate
metalevels to be able to access them further down the meta-hierarchy. To
solve this problem, we will follow a set of replication rules with inspiration
from Rossini (et.al.) [34] [47]. In the code Generator it also became more
apparent that certain values such as the name of attributes should not
change throughout the meta-hierarchy, but stay consistent instead. This
will be solved by the concept of mutability. Last but not least, we will extend
the current multi-graph to an E-Graph to (amongst others) allow easier
access to predefined datatypes in EMF.

63

Chapter 5. Design And Implementation

5.3.1 Model Flattening Semantics

The semantics of instantiation is intimately related to the related elements
and its containing elements. When an element x is instantiated to create
an element y, the semantics of instantiation dictates that every containing
element of x becomes an element of y with the same name and value
as the appropriate type [32]. In terms of attributes, this means that for
a class containing attributes, every instance of the class (object) should
contain the attribute (slot) with the same name and value as its type. In
order to provide a solution that ensures this in practice, we will flatten the
metamodel with basis on a set of replication rules for attributes. The idea is
to create linguistic instances of Clabjects, add attributes and define potency.
When the instances of these Clabjects are created, its containing attributes
are automatically replicated as well. The definition of the replication rule
for Attributes in this thesis is:

Replication Rule 5.2 (Attribute). When instantiating Clabjects, iterate over the
Attributes contained in the Clabject we are instantiating. If the contained Attribute
has a potency > 0 then re-instantiate the Attribute with the same name as its type,
and add it to the instantiated Clabject.

By following the replication rule for Attributes, we will automatically
replicate the attributes at each instantiation-step until potency is zero. This
way the Attribute is made available for modellers further down the meta-
hierarchy without having to explicitly redefine attributes at intermediate
metalevels. The Attribute is also hidden from the palette, such that from
a modellers perspective it will look like we specify an Attribute at one
metalevel, and instantiate it several metalevels below. In fact the models are
still the same, only that Attributes are replicated at intermediate metalevels
to allow access further down the meta-hierarchy.

When modelling requirements across multiple metalevels, we also real-
ize that the value of the model element might change. The next section will
discuss the concept of mutability, which provides a well-defined solution
to restrict how and when a model element can change its value.

5.3.2 Mutability

As potency is a way to restrict the instantiation depth of model elements,
mutability is a way to restrict the number of times it is possible to change
the value of a model element. To implement mutability, we first need to
have a look at current definition of the core metamodel in DPF. We want to
add mutability to all model elements with a name such as Node and Arrow.
To do this we will implement a MutableElement interface containing a
mutability integer, much like the DeepElement interface is used to define
potency. We decided to set the default value of mutability to -1, which
means that the value of a model element can change as many times as the
potency of the element.

64

Chapter 5. Design And Implementation

As potency is defining how many sub-sequent metalevels a model ele-
ment can be instantiated, it also means that the potency sets the boundary
for how many times the value of the model element can be changed. When
the potency of a model element has been set, it can only be instantiated at
a certain amount of sub-sequent instantiation steps, which also means it is
only possible to change its value as many times as the number of its potency.
This means the mutability can not be higher than the potency. However,
whether the mutability is equal or higher than the potency of the model
element does not make any difference in the system. If the mutability is
higher than the potency, it might only appear confusing for modellers, and
will not impact the system. For this reason, a constraint on mutability will
be discussed under future work instead.

Figure 5.9 below illustrates the core metamodel in the model editor with
the MutableElement interface added to the Node and Arrow.

Graph

name : EString

Node

name : EString

Arrow

name : EString

target source

Specification

typeNode

typeArrow

GraphHomomorphism

typeGraph

Constraint

<<Interface>>

DeepElement

<<Interface>>

MutableElement

mutability : EInt

potency : EInt

metalevel : EInt
typeSpec

F I G U R E 5.9: The core metamodel in DPF with added potency and mutability

Figure 5.9 illustrates the modified core metamodel in the model editor
with added mutability. All linguistic model elements will have a default
mutability which is set to -1, except from the default metamodel where we
specify the behaviour of the ontological elements. When it comes to Clab-
jects and References, we have decided to keep an undefined mutability.
This means in practice that References and Clabjects are mutable, and its
value can change as many times as we would like.

The mutability of Attributes will have an initial mutability of one, while
DataTypes will have a mutability of two. By defining Attributes with a mu-
tability of one, we will restrict the possibility of changing the name of the
Attribute further down the meta-hierarchy. When an Attribute is instan-
tiated, its name is being set and the mutability is decreased to zero. The
mutability will then act as a constraint that ensures that the name of the
Attribute has the same name at every sub-sequent metalevel. Regarding
DataTypes, the idea is that first the name of the DataType Node is specify-
ing the DataType of the Attribute, then at instance level we can set its value.

65

Chapter 5. Design And Implementation

In practice this means that the value has to be set twice, and a mutability
of two is the most natural choice.

It is now possible to access Attributes further down the meta-hierarchy
without having to re-instantiate it at intermediate instantiation-steps. Sec-
ondly, to ensure naming consistency and provide a well-formed solution
to restrict the number of times a model element can change its name, we
have now implemented mutability. Thirdly, we will now improve on the
definition of DataTypes. Currently we have to define datatypes manually,
which naturally is prone to error. The next section will therefore provide
an explanation of how we will extend the current directed graph to an
E-Graph.

5.3.3 E-Graphs

In this section we will present the original directed multi-graph extended
with node- and arrow-attributes. We may recall definition 2.1 where we
defined a directed multi-graph as a set G = (GN, GE, srcG, trgG). In this
section, we will extend the directed multi-graph by following the approach
in [48] to define a new kind of graph, called E-Graph.

Definition 5.3 (E-Graph and E-Graph Morphism). An E-graph G = (NG,
ND,EG,ANA,AAA,(sourcej, targetj)j=G,NA,AA) consists of sets

— NG and ND called graph resp. data nodes,
— AG, ANA, AAA called graph, node attribute and arrow attribute arrows respectively,

and source and target functions:

— sourceG : AG −→ NG, targetG : AG −→ NG for graph arrows;
— sourceNA : ANA −→ NG, targetNA : ANA −→ ND for node attribute arrows;
— sourceAA : AAA −→ NG, targetAA : AAA −→ ND for arrow attribute arrows;

such that the following diagram commutes:

AAA ND ANA

NGAG

sourceG

targetG

sourceAA

targetAA targetNA

sourceNA

Let Gk = (Nk
G, Nk

D, Ak
G, Ak

NA, Ak
AA, (sourcek

j, targetk
j)j ∈ (G,NA,AA)) for k = 1, 2 be

two E-graphs. An E-graph morphism f : G1→ G2 is a tuple (fNG
, fND

, fAG
, fANA

, fAAA
)

with fNi
: N i

1 → N i
2 and fAj

: Aj
1 → Aj

2 for i ∈ (G, D), j ∈ (G,NA, AA) such that f
commutes with all source and target functions, e.g. fNG

◦ source1
G = source2

G ◦ fAG
.

By following definition 5.3 taken from [48], we form category EGraphs.
With this new type of graph, we will be able to model with two additional

66

Chapter 5. Design And Implementation

types of arrows (NodeAttribute and ArrowAttribute), as well as one ad-
ditional type of node (DataNode). With NodeAttributes, we can specify
additional properties of Nodes, such as values of Attributes with datatype
specified directly from EMF. We are also able to add additional properties of
for example Clabjects, such as visibility, isAbstract, isInterface, isFinal and
similar. With ArrowAttributes it also becomes easier to specify References
between Clabjects, as we now are able to add attributes to References sim-
ilar to adding Fields to Edges in Metadepth.

The next section will present the extension of the core metamodel in the
model editor to an E-Graph.

5.3.3.1 Implementation

To extend the current definition of a directed multi-graph in DPF to an
E-Graph, we need three components according to definition 5.3. We need
a NodeAttribute(ENA), ArrowAttribute(EEA) and a DataNode(VD) as illus-
trated in figure 5.10 below. We have decided that to extend the current
Graph in DPF to an E-Graph, we have added a NodeAttribute, ArrowAt-
tribute and a DataNode class. The DataNode class will represent a new type
of Node with three attributes: value, datatype and isDatatype. As we recall
from the current definition of attributes, we first define the DataType, then
instantiate the DataType node with its corresponding value. The idea is to
create a DataNode that works two ways, first as a DataType node where we
can specify datatypes directly from the predefined set of datatypes in EMF.
Secondly, we aim at using the DataNode to contain values. To distinguish
between whether the DataNode is specifying datatype or datavalue, we
have added a isDatatype boolean. If the isDatatype attribute is true, it is a
datatype, otherwise it is a datavalue.

Graph

name : EString

Node

name : EString

Arrow

name : EString

target source

Specification

typeNode

typeArrow

GraphHomomorphism

typeGraph

Constraint

<<Interface>>

DeepElement

<<Interface>>

MutableElement

mutability : EInt

potency : EInt

DataNode

value : EString

datatype : Estring

isDataType : EBoolean

NodeAttribute

name : EString

sourcetarget

metalevel : EInt

ArrowAttribute

name : EString

source

target

typeSpec

type

type

type

F I G U R E 5.10: The new core metamodel in DPF with added potency, muta-
bility, NodeAttribute, ArrowAttribute and DataNode.

67

Chapter 5. Design And Implementation

Through the separation of the DataNode concept, we aim at specifying
a deep hierarchy of datanodes by first defining a hierarchy of the desired
datatype, then defining the datavalue of the attribute. Datavalues can also
be instantiated further, thus providing a meta-hierarchy of datavalues. This
hierarchy of datavalues can be seen in relation to dual fields as it was
defined by Atkinson and Kühne [32]. A single field is a field containing a
certain value, while a dual field is a set of single fields. Each time the value
of a datanode is changed, it will represent the equivalent of a single field
as it was defined in [32]. With inspiration from the linguistic metamodel
in Melanee, we will not define potency on DataNodes. This is because
DataNodes will be a property of Nodes or Arrows much like Attributes
is contained in Clabjects in Melanee. Therefore we have decided that the
instantiation depth of a datanode will be determined by the Node or Arrow
it is contained in instead.

DGraph

DNode

size : EDimension;

location : ELocation;

node: Node

DArrow

lineStyle : Eint

arrow : Arrow

dTarget dSource

DSpecification

dType

dType
dType

dTypeDConstraint
DConstraintDNode

dConstraint

graph : Graph;

constraint : Constraint

spec : Specification;

DataNode

size : EDimension;

location : ELocation;

datanode: DataNode

DNodeAttribute

lineStyle : Eint

nodeAttr : NodeAttribute

DNodeAttribute

lineStyle : Eint

nodeAttr : NodeAttribute

dSource

dTarget

dTarget

dSource

F I G U R E 5.11: The extended diagram metamodel in DPF with added support
for NodeAttribute, ArrowAttribute and DataNode.

Figure 5.11 above, illustrates the extended diagram metamodel with
added support for NodeAttribute, ArrowAttribute and DataNode. By adding
visual representations of the core elements in the diagram metamodel,
we can visualize DataNodes, NodeAttributes and ArrowAttributes. The
abstract syntax visualization of these elements has been made with inspi-
ration from [48], with DataNodes visualized as ellipses with dotted lines,
and NodeAttributes and ArrowAttributes as dotted arrows.

Node@*

Arrow@*

DataNodeNodeAttribute

ArrowAttribute

F I G U R E 5.12: A visualization of the E-Graph as it is implemented in the
DPF Editor.

With this new E-Graph, we can redefine the definition of Attributes in
the default metamodel from Entity-Attribute-Value to an Attribute Arrow

68

Chapter 5. Design And Implementation

and single Attribute Node as illustrated in figure 5.13. With support for
attributes on Nodes, we have now added NodeAttributes with DataNodes
holding the datatype, value and default value of the Attribute. We have
also added support for methods with containing parameters, with inspi-
ration from [48]. With NodeAttributes we can also define properties of
method parameters such as direction and order. By defining direction, we
can specify whether the parameter is an input parameter or return param-
eter, and its order is telling us the order of the input parameters as some
programming languages such as Java require this.

Clabject@* : Node Attribute@* : NodeAttribute@* : Arrow EDataType

attributeValue : NodeAttributeReference@* : Arrow

Method@* : Node Parameter@* : NodeMethodParameter@* : Arrow

Method@* : Arrow
MethodParameterType@* : Arrow

EInt

parameterOrder : NodeAttribute

EString

parameterDirection : NodeAttribute

EBoolean

referenceIsAggregation : ArrowAttribute

F I G U R E 5.13: The extended default metamodel in DPF.

As we can see from figure 5.13, we can now specify attributes on Nodes
and Arrows. In fact, we can specify properties of the Nodes and Arrows
which follow the definition of their attached Node or Arrow. The attributes
does therefore not have any potency, but will only have a mutability de-
fined. As explained earlier, through mutability we can define hierarchies
of datatypes and values that can form a structure like dual fields as Atkin-
son and Kühne described it [32]. The potency of the attributes is thereby
defined by its attached element, and replicated as the Node or Arrow is be-
ing instantiated. In fact, the attributes in the graph will follow replication
rules much like the one used to replicate Attributes in Clabjects. When a
new instance of for example a Node is created, its NodeAttributes will be
automatically replicated as corresponding to the outgoing NodeAttributes
of its type in the type-graph.

Replication Rule 5.4 (Node- / ArrowAttributes). Instantiate all Node and
ArrowAttributes along with its corresponding Node / Arrow. When instantiating a
new Node / Arrow, instantiate all Node- / ArrowAttributes of the corresponding type
as well.

5.3.4 Summary

At this stage we have implemented deep instantiation with replication
rules ensuring requirements across multiple metalevels without the need
to explicitly redefine concepts. Secondly we have implemented the concept
of mutability, which allows a concise definition of how and when the value

69

Chapter 5. Design And Implementation

of a model element can change. Thirdly we have extended the original
graph to an E-Graph, which makes it easier to specify certain details of the
models. Extending the graph to a E-Graph also makes it possible to use
datatypes that is predefined in EMF. Another interesting aspect as we briefly
mentioned when introducing the model editor in section 2.6.2, is that one
of the greatest strengths of the model editor is that it can be used to model
templates (patterns). The default metamodel is one example of a template
of a simplified UML Class diagram, but the editor can be used to model
basically any kind of template, and utilize it with deep metamodelling. The
next section will illustrate how we made this possible.

5.4 Templates

In chapter 2, we briefly introduced the model editor with its general nature
and ability to be used to develop pattern languages. The default metamodel
we have developed so far in this thesis is one type of a pattern language,
namely a UML Class diagram. However, deep metamodelling is not only
about UML Class diagrams, it is about multi-level metamodelling in general.
This can also mean other types of diagrams such as Expression diagrams,
Business Process Modelling diagrams, UML Package diagrams, State dia-
grams and so on. Modelling new types of diagrams is unfortunately not
possible in the current implementation of the model editor, but would
greatly benefit the usability of the model editor as a whole.

The second aspect of the model editor is that we want to make the DPF
models as generic as possible, meaning that the modelling hierarchy we
end up developing should be possible to be run in other systems as well.
It should be possible to import any modelling hierarchy that is modelled
by the model editor into a target system. The general nature of EMF is to
create new platform independent models and create editors based on the
platform independent model. It should be possible to map the top-level
metamodel in DPF to any platform independent model of concern, so that
the DPF models can be used in other systems as well.

To make it easier to model pattern languages (templates), and to make
it easier to map the DPF models to other systems, we decided to create a
new instance of the core metamodel in DPF. We decided to develop a meta-
model of an enriched graph that resides between the default metamodel
and the core metamodel. Secondly, with this new metamodel we can also
use the NodeAttributes and ArrowAttributes to extend the enriched graph
with model elements that can represent specific functionality such as In-
heritance and Containment. With Containment, we can nest Nodes inside
each other, and provide a more generic approach to the replication rules of
Attributes. We know that Attributes is contained in Clabjects, and we have
developed a replication rule specifically for Attributes. There might how-
ever be other types of elements contained in Clabjects such as Methods, or
any type of nesting of DeepNodes such as Clabjects inside Clabjects. With

70

Chapter 5. Design And Implementation

the Containment feature, we can establish a generic replication rule for
this, and allow modellers to define directly in the template what elements
that should be contained in other elements.

5.4.1 Enriched Graph

As explained in the previous section, we decided that by creating an in-
stance of the core metamodel, we can create an enriched graph with ad-
ditional functionalities. An additional metamodel between the core meta-
model and the default metamodel also makes it easier to map the top-level
metamodel in DPF with other types of core metamodels; this would allow
the meta-hierarchy of metamodels to be run on other systems as well. This
new metamodel of an enriched graph will consist of the basic building-
blocks of our editor, as illustrated in figure 5.14 below.

DeepNode@* : Node

DeepArrow@* : Arrow

Inheritance@* : Arrow

NodeProperty : NodeAttribute

ArrowProperty : ArrowAttribute

EString

Containment : ArrowAttribute

EString

EBoolean

EDataType

Value : NodeAttribute

F I G U R E 5.14: The current enriched graph in the DPF Model Editor

The main elements considering deep metamodelling, is DeepNode along
with DeepArrow. Both these elements are capable of deep instantiation,
and the instantiation depth is defined by its attached potency. Both DeepN-
ode and DeepArrow can also be defined with additional properties in form
of NodeProperty and ArrowProperty. These properties are defined by the
EString datatype, and can be instantiated in the template metamodel with
default values for a given property(see figure 5.16). We also decided to
add Value to the DeepNode. This is to ensure a generic way for the editor
to access values that might be assigned to DeepNodes such as Attributes.
By defining the Value here, it is easier to ensure that the value of a given
element is instantiated when it is supposed to, such as for slots at potency 0
in OOP. Lastly and with inspiration from Melanee, we decided to add Con-
tainment on DeepArrow to support nesting of DeepNodes. With this feature
we can define Attributes as containment inside Clabjects in a generic way,
and replicate elements accordingly. This will generalize the replication rule
for Attributes we defined in replication rule 5.2 to a generic replication
rule for containments:

Replication Rule 5.5 (Containment). When instantiating a Clabject, check the
type of the instantiated Clabject if it has any outgoing arrows that is containment
arrows. If there is any containment arrows, create instances of the containment
arrows along with instances of the target node of the containment arrow.

71

Chapter 5. Design And Implementation

In practice this means if the type of an instantiated DeepNode has any
contained DeepNodes, they will be automatically instantiated along with
the new DeepNode. Instead of hardcoding that all Attributes should be repli-
cated along with Clabjects, we can now define outgoing Attribute arrows
from Clabject as containment, and they will be instantiated automatically
along with the instantiation of the Clabject. For example if we would intro-
duce Methods - instead of hardcoding in the model editor that all Methods
should be replicated according to some replication rule for Methods, it
will follow the generic replication rule for containment instead. Lastly, we
also decided to add Inheritance in the enriched graph, but this is currently
regarded as outside the scope of this thesis, and will be discussed under
further work instead. Adding additional functionality in the enriched graph
also makes us avoid that other plugins in the DPF family are getting cor-
rupted. The enriched graph will be hardcoded in the model editor, and
each type of model element will have their own functionality, yielding a
solution where we adhere to a graph structure as the core metamodel, and
adding more functionality as we add new metamodels. The result is a plat-
form independent modelling hierarchy with the most abstract concepts at
the top level, and the least abstract concepts at the bottommost metalevel.

5.4.2 Platform Independent Modelling Hierarcies in DPF

Figure 5.15 on the next page illustrates the new hierarchy of metamodels
in the model editor and its intended use. As we defined earlier, the core
metamodel in DPF can be defined by a broad range of external resources
such as UML, XML, databases, ontologies, OO interfaces and more. The core
metamodel is the meta-metalanguage in the DPF meta-hierarchy, and is
currently consisting of an E-Graph. The idea is that this meta-metalanguage
can be interchanged with any type of language, as long as there exist
elements that can be mapped to each element in the metamodel of the
enriched graph we defined in figure 5.14.

Earlier in this thesis we have focused on a default metamodel of a UML
Class diagram as a template for our editor. We have used the default
metamodel as a linguistic metamodel, which is replicated at sub-sequent
instantiation-steps to allow linguistic extension. With this new structure,
each template is still at metalevel -1, and will be replicated at each sub-
sequent metalevel except the bottommost ontological metalevel. The dif-
ference now is that it is possible to create new templates other than UML
Class diagrams. Modellers can use the enriched graph (metalevel -2) to
model almost any kind of graph based on the modellers needs, with the
additional possibility to linguistically extend ontological metamodels with
elements from the template metamodel. It will be possible to model almost
any kind of metamodelling hierarchy with support for deep instantiation
and linguistic extension. It will be possible to define mutability on any
model element in the new template, specification of requirements will be
possible across an arbitrary number of metamodels.

72

Chapter 5. Design And Implementation

Metalevel 0 : Top Ontological metalevel
Plant

Linguistic
metamodels

Metalevel 1 : …
Tree)

Ontological
metamodels

Interchangeable
meta meta-language

Metalevel 2 : …)
NorwaySpruce

Platform Independent
modelling hierarchy

UML XML
User defined OO interfaces

Other sources

Metalevel -3 : DPF Meta-metalanguage
Directed graph

Metalevel -1 : Template-language
Class diagram, Expressions, etc..

Metalevel -2 : Metalanguage
Enriched graph

Database Ontologies

F I G U R E 5.15: A Platform Independent Modelling Hierarchy in the DPF
Model Editor.

Figure 5.15 illustrates an example of a Platform Independent Modelling
Hierarchy (PIMH) in the DPF Model Editor. As we see, the meta-metalanguage
at metalevel -3 can be defined by a broad range of external resources. In
the current model editor the top-level meta-metalanguage consists of an
E-Graph, but other tools may consist of other types of structures. The idea
with the PIMH in figure 5.15 is to provide a meta-hierarchy of metamodels
that can be used in other systems as well. The top-level meta-metalanguage
should therefore be as interchangeable as possible. As we described ear-
lier in this section, we have therefore added a metalanguage between the
template metamodel and the meta-metalanguage to make this process eas-
ier. The metalanguage resides on metalevel -2, and is used as the main
building-blocks of the meta-hierarchy in DPF with added support for func-
tionalities such as inheritance and nesting of nodes. The metalanguage
will be used to model linguistic metamodels in form of templates, which
is replicated at the ontological metalevels to allow linguistic extension.

5.4.3 Summary

Even though we have implemented a well-defined meta-hierarchy as il-
lustrated in figure 5.15 , we realize that the models are growing bigger
and bigger and it is getting increasingly difficult for modellers to gain an
overview of the models. The abstract syntax we have defined up till now
is not very intuitive for modellers to use either, and therefore a more user-
friendly concrete syntax is necessary as well. Figure 5.16 below illustrates

73

Chapter 5. Design And Implementation

the current version of the UML Class diagram template that is used in this
thesis.

Clabject@* : DeepNode Attribute@* : DeepNode
Attribute@* : DeepArrow

EDataType

attributeValue : ValueReference@* : DeepArrow

false

clabjectIsAbstract : NodeProperty

clabjectIsInterface : NodeProperty

Method@* : DeepNode Parameter@* : DeepNode
MethodParameter@* : DeepArrow

Method@* : DeepArrow

MethodParameterType@* : DeepArrow

false

methodIsFinal : NodeProperty

0

parameterOrder : NodeProperty

input

parameterDirection : NodeProperty

default

attributeVisibility : NodeProperty

default

methodVisibility : NodeProperty

default

clabjectVisibility : NodeProperty

clabjectIsFinal : NodeProperty

methodIsStatic : NodeProperty parameterIsFinal : NodeProperty

false

attributeIsFinal : NodeProperty

referenceContainment : Containment

true

methodContainment : Containment

methodParameterContainment : Containment

methodParameterTypeContainment : Containment

true

attributeContainment : Containment

false

false

EDataType

methodParameterType : Value

F I G U R E 5.16: An illustration of the current template of a UML Class diagram
in DPF.

As we see, it is not easy for modellers to develop new models based on
this diagram in its abstract syntax. In the next section, we are therefore
going to improve on the definitions made so far in this thesis, by adding a
more visually appealing and user-friendly concrete syntax. We will present
the implementation of the corresponding concrete syntax, which in the
end is the syntax that modellers will use when modelling in DPF.

5.5 The Concrete Syntax

As illustrated in figure 5.16 in the previous section, it is becoming apparent
that modelling larger models is a both difficult and cumbersome process.
The purpose of MDE is to simplify the design process and increase pro-
ductivity, but as the models are growing bigger, the models are getting
increasingly harder to understand and maintain. A more user-friendly syn-
tax is therefore necessary to improve the useability of the system. This
section will introduce the development of a new concrete syntax for the
abstract syntax we have defined earlier in this thesis. To do this, we will
first of all need a visual metamodel, describing the structure of the model
elements in the concrete syntax. Secondly, we need to specify the mapping
between the abstract and concrete syntax. First of all, we will introduce
the new visual metamodel that is used in this thesis.

74

Chapter 5. Design And Implementation

5.5.1 The Visual Metamodel

In chapter 2, we briefly mentioned that the syntax of a DSML can be di-
vided into three parts: the definition of the abstract syntax, the concrete
syntax and the mapping between the abstract and the concrete syntax. To
implement the concrete syntax, we will use the DPF Visualization Editor
and extend it to visualize template metamodels in a concrete syntax. To do
this, we first need to create a visual metamodel of the concrete syntax. We
need to elaborate for how the template is going to be visualized. In terms
of the current template as illustrated in figure 5.16, UML Class diagrams
already has a fixed visual syntax in which we should follow. Classes are vi-
sualized as rectangles with compartments for Attributes and Methods. This
means we will create a visual metamodel consisting of the visual elements
as illustrated in figure 5.17.

Composed : VArrow

isComposed = true

Composite : VNode

isComposite = true

UnComposed : VArrow

isComposed = false

F I G U R E 5.17: An illustration of the visual metamodel used to visualize UML
Class diagrams in a concrete syntax.

The Composite VNode will be used to visualize Clabjects with containing
Attributes and Methods. We have also created a Composed VArrow, which
will be used to determine what elements that will be contained in the Com-
posite VNode. The last element is a UnComposed VArrow, and will be used
to visualize Arrows between concrete syntax elements, such as References
between Clabjects. The next step is then to elaborate for how we will map
the abstract syntax with the concrete syntax, the diagram metamodel with
the visual metamodel. A problem with the current Visualization Editor is
however that the mapping between the diagram metamodel and the vi-
sual metamodel only works on two metalevels at a time. This means that
if we want to model more than two metalevels, we need to redefine the
mapping between the diagram metamodel and the visual metamodel at
each metalevel. Instead we want a consistent solution where we dont have
to redefine the visualization of each model element at each metalevel. A
UML Class diagram already have a defined visualization which should not
change at each metalevel, but rather be kept consistent throughout the
meta-hierarchy.

To do this we need to specify how the model mapping will be done, and
secondly we will create a new wizard that follows these principles to create
a new concrete syntax diagram. The next section will elaborate for how
this is done in this thesis.

5.5.2 The Model Mapping

For the mapping between the diagram metamodel and the visual meta-
model we created in figure 5.17, we decided that we are going to specify

75

Chapter 5. Design And Implementation

the mapping only once. We want to specify the mapping based on the tem-
plate metamodel, and then make the editor automatically map sub-sequent
instances based on what template element it is typed by. What we want is
a solution where the only thing modellers need to do is to load a diagram
metamodel and the concrete syntax mapping will be made automatically.

When modelling new template diagrams, we currently need to specify
the mapping either programatically or through an in-built wizard in the
DPF Visualization editor. This can be simplified by adding visualization
data in the template metamodel, and thereby make it possible for mod-
ellers to consisely specify how each model element in the abstract syntax
should be visualized. By extending the template metamodel with support
for visualization data, we can make the editor treat a specific kind of ar-
row in a specific way such as holding visualization data. However, if we
would add visualization data in the template metamodel, we would have
ensure the names of the model elements that is holding visualization data
is named in a specific manner. If we instead extend the enriched graph with
two additional types; NodeVisualization and ArrowVisualization, we can en-
sure that these specific types of arrows are only used to hold visualization
data.

DeepNode@* : Node

DeepArrow@* : Arrow

Inheritance@* : Arrow

NodeProperty : NodeAttribute

ArrowProperty : ArrowAttribute

EString

Containment : ArrowAttribute

EString

EBoolean

EDataType

Value : NodeAttribute

EString

NodeVisualization : NodeAttribute

EString

ArrowVisualization : ArrowAttribute

F I G U R E 5.18: An illustration of the enriched graph in the DPF Model Editor,
with added support for visualizations

With the new types of arrows, we can now add instances of these in
the template metamodel which can be used to specify how each element
in the abstract syntax should be visualized as illustrated in Figure 5.19
on the next page illustrates a simplified example of a template of a UML
Class diagram with attached visualization data. We have stripped off addi-
tional Node- and ArrowAttributes for illustration purposes. We have added
a NodeAttribute representing the concrete syntax visualization of the Clab-
ject: clabjectVisualization. In this case, we want to map the Clabject to the
Composite VNode in the visual metamodel, and the value of the clabjectVi-
sualization is therefore set to ’Composite’. The idea is that modellers can
specify what visual element each Node and Arrow in the template should
be mapped to, and is specified by the name of the visual element. To allow
Attributes and Methods to be composed inside Clabjects, we have specified
the Attribute and Method Arrows as ’Composed’. By defining the Attribute
and Method Arrows to be mapped to the ’Composed’ VArrow in the vi-
sual metamodel, we will tell the Visualization editor that the target nodes
should be composed inside the Clabject.

76

Chapter 5. Design And Implementation

Clabject@* : DeepNode Attribute@* : DeepNodeAttribute@* : DeepArrow

Composed

attributeVisualization : ArrowVisualization

Reference@* : DeepArrow

Method@* : DeepNode Parameter@* : DeepNodeMethodParameter@* : DeepArrow

Method@* : DeepArrow

MethodParameterType@* : DeepArrow

UnComposed

referenceVisualization : ArrowVisualization

clabjectVisualization : NodeVisualization

Composite

methodVisualization : ArrowVisualization

Composed

methodParameterTypeVisualization : ArrowVisualization

Composed

methodParameterVisualization : ArrowVisualization

F I G U R E 5.19: An illustration of a simplified UML Class diagram template
with visualization data.

When the appropriate visualization data is added to the template meta-
model, the editor will run algorithm 2 as illustrated below. By first iterating
through all the DNodes in the model, the algorithm aims at finding the
specified visualization of each node and map it to the corresponding visual
element. If the name of the datanode that is containing the visualization
data is equal to the name of a VNode in the visual metamodel, the algo-
rithm will map the DNode with the visual element. When the algorithm
has iterated over all the DNodes in the DGraph, it will do the same process
for the DArrows in the DGraph.

Data: Insert a diagram model (d graph) along with a visual metamodel (visual)
foreach dnode in d graph do

foreach outgoing dnodeAt t ribute from dnode do
get tar getDatanode from dnodeAt t ribute;
foreach visualElement in visual do

if visualElement.getName().equals(tar getDatanode.value) then
map dnode→ visualElement;

end
end

end
end
foreach darrow in d graph do

foreach outgoing darrowAt t ribute from darrow do
get tar getDatanode from darrowAt t ribute;
foreach visualElement in visual do

if visualElement.getName().equals(tar getDatanode.value) then
map darrow→ visualElement;

end
end

end
end

Algorithm 2: The abstract to concrete syntax mapping algorithm used in
the DPF Visualization editor.

As we can see from algorithm 2, all we need to do is to add the cor-
rect visualization data in the abstract syntax. As long as each appropriate
node and arrow is containing the correct visualization data as seen in fig-
ure 5.19, each element will be mapped automatically. The clue is however
that the visualization data must be specified with the exact same name as

77

Chapter 5. Design And Implementation

the corresponding visual element we want to map the diagram element
to. Unfortunately this currently makes the system prone to error, and the
names of the visualization elements should be accessed from a list instead.

At this stage, we have defined both the visual metamodel and an algo-
rithm that will map the abstract syntax to the concrete syntax. The next
step is to implement a solution that initiates algorithm 2, and automati-
cally maps the abstract syntax to the concrete syntax. There already exists
a model mapping wizard in the visualization editor, but this wizard require
a re-mapping at each meta-level. As stated earlier in this section, we only
want to define the mapping once, and keep the visualization at sub-sequent
metalevels. We are therefore going to implement a new wizard that initiates
the model mapping instead, namely the Template Visualization Wizard.

5.5.3 The Template Visualization Wizard

We may recall that the abstract syntax is externally represented in two
files, an .xmi file for the core metamodel and a .dpf file for the diagram
metamodel. The concrete syntax is represented in a third .visualization
file, holding the mapping and a reference to the visual metamodel as well
as the diagram metamodel. To initiate algorithm 2, we have implemented
a wizard that can take a diagram metamodel and a visual metamodel as
input, and create new metamodels as a result. The wizard will create a
.xmi file for the core metamodel, a .dpf file for the diagram metamodel and
a .visualization file for the visual metamodel. The template visualization
wizard is fairly simple, meaning it only needs to execute algorithm 2, and
save the result in three files (.xmi, .dpf and .visualization). We are how-
ever not going into any further detail about the wizard here, but rather
demonstrate it in chapter 6 instead.

When the concrete syntax is created and the model is opened, we realize
that every single model element from the abstract syntax is added to the
palette (Nodes, NodeAttributes, Arrows, ArrowAttributes and DataNodes).
This is obviously not suitable for our implementation, as it makes it difficult
to find the model element we want to use. The next section will explain
what we can do to filter out the necessary model elements such that only
the model elements we would model with, is added to the palette. The rest
of the model elements are automatically generated through the replication
rules as stated earlier in this chapter.

78

Chapter 5. Design And Implementation

5.5.4 Filtering Model Elements In The Palette

As all the model elements are added to the palette, it naturally results in
a palette that is very difficult to use for modellers. For starters, Node- and
ArrowAttributes are re-instantiated along with the Node or Arrow it is con-
tained in. It will therefore not be necessary to have neither NodeAttributes,
ArrowAttributes nor DataNodes in the palette.

Secondly, instantiated Attributes and Methods contained in Clabjects are
re-instantiated by replication rules, so these elements should not be in the
palette either. In practice, all elements that is re-instantiated through a
replication rule should not be in the palette (except from the template
elements). As an example, lets consider the addition of a name Attribute
in a Clabject. The name Attribute will be re-instantiated along with the
instantiation of the Clabject. Allowing to add new instances of name in
the Clabject would result in duplicate elements of the same Attribute in a
single Clabject, and is clearly something we want to avoid.

Figure 5.20 below, illustrates the plant example with the current layout
in the visualization editor. To the right, we can see the palette containing
the template elements from the template we created in figure 5.16, only
with added visualization data. As we can see, the template metamodel
is containing far more elements than what is added to the palette. The
palette is only containing the elements we need to model with.

Template Elements

Clabject

Reference

Attribute

Method

Plant@2 : Clabject

plantName@2 : EString

getName()@2

F I G U R E 5.20: A simple illustration of metalevel 0 of the plant example,
illustrated in the visualization editor.

To seperate between ontological instances and linguistic instances, we
have created a seperate palette-drawer for the template elements, named
Template Elements. When instances of this metamodel is created, the ele-
ments will be added to a new palette-drawer named DSL Elements.

The current implementation of the visualization editor does however
not support nesting of nodes at more than one level. As an example, lets
consider Methods. Methods are nodes that is contained in Clabjects, but
Methods is also containing Parameter nodes. It is currently possible to
nest Methods in Clabjects, but there are no structure that allows nesting

79

Chapter 5. Design And Implementation

of Parameters in Methods as well. This means we have to create Param-
eters manually, and we have created a Method dialog especially for this
purpose. Only Method nodes will be in the palette, but when adding new
Method nodes in Clabjects, a method dialog will pop up with the possibil-
ity to define properties of methods such as name, return parameter and
potency. However, the method dialog is currently very simple, and only
supports modelling of methods with a return type. The method dialog will
be presented under the demonstration of the tool in chapter 6.

Figure 5.21 below, illustrates an instance of the model we presented in
figure 5.20. As we can see, the only element we need to model with is
the template elements for linguistic extension, and the Plant element. The
Plant element is an ontological element, and is added to a new palette-
drawer named DSL Elements, as described above. The palette-drawer for
Template Elements is closed for illustration purposes. By clicking on the
Template Elements drawer, it will slide down and provide modellers with
template elements for linguistic extensions.

Template Elements

DSL Elements

Plant

Tree@1 : Plant

plantName@1 : EString

getName()@1

F I G U R E 5.21: A simple illustration of metalevel 1 of the plant example,
illustrated in the visualization editor.

Modellers can linguistically extend ontological models by adding tem-
plate elements from the palette, and connect them with the ontological
instances at any metalevel. As we see from figure 5.20 above, it is easy
for modellers to reach the tools they need to model with. Model elements
that is replicated and simply not necessary to add to the model directly,
is not added to the palette. These elements such as NodeAttributes and
ArrowAttributes can be modified through a Set Property dialog instead.
This dialog will work on any node or arrow, and is dynamically filling a
table with the outgoing NodeAttributes or ArrowAttributes. Modellers can
then modify any element in the table, such as the datatype or value of an
Attribute. This property dialog will be presented under the demonstration
of the tool in chapter 6.

80

Chapter 5. Design And Implementation

5.6 Current Shortcomings

In short, the editor implemented in this thesis should be regarded as a
prototype, as it has not been tested properly. Secondly, it is necessary with
proper naming constraints for potency to ensure for example that an at-
tribute is instantiated with a datatype, and a slot is instantiated with a value.
We need proper naming constraints to ensure that no ontological model
element has the same name as any linguistic element. The visualization
editor is not updating its visualizations properly after replicating elements,
and currently the visualizations offered in the visualization editor is quite
limited. We only briefly mention the most apparent limitations here, while
a more thorough listing of the shortcomings is presented section 7.2.1.

5.7 Summary

By following the research methodology as we defined it in section 3.5, we
have now managed to implement a fully diagrammatic editor for deep
metamodelling in both an abstract and concrete syntax. The editor sup-
ports deep instantiation through potency, linguistic and ontological instan-
tiation and linguistic extension. We have also added support for mutability
to define restrictions on how many times the value of a node or arrow
can change. With the implementation of an e-graph, we can also define
datatypes directly from the predefined datatypes in EMF. Lastly, we have
created an enriched graph with additional functionality such as contain-
ment and added visualization data. With this enriched graph it is also
easier to create new template models, and it is easier to map different
modelling-hierarchies in DPF to other systems of concern.

81

CHAPTER6
Demonstration

In this chapter, we present the abstract and concrete syntax in DPF as we
implemented it in this thesis. Through this chapter, we aim at demonstrat-
ing the current features as we implemented them in chapter 5. We begin
this chapter with a demonstration of the development of templates in the
Model Editor, building up larger models throughout this chapter. Finally
we will demonstrate an example of the development of a visual metamodel
in the Visualization editor to visualize the models in a concrete syntax.

6.1 The Abstract Syntax

As a starting point, we begin the demonstration by presenting the process
of creating new templates. We have implemented a new wizard for tem-
plates as illustrated in figure 6.1 below.

F I G U R E 6.1: An overview of the wizards provided in DPF.

Figure 6.1 illustrates the wizards that is currently available in DPF, such
as the Template-, Visual- and Template Visualization wizards amongst oth-
ers. The template wizard is simple, basically the only thing it is doing is
to ensure that the new metamodel is based on the enriched graph we de-
fined in section 5.4, and that the new metamodel resides on the default
metalevel (metalevel -1). To make it easier to conceptualize the template
metamodel, we present the enriched graph as illustrated in figure 6.2.

82

Chapter 6. Demonstration

DeepNode@* : Node

DeepArrow@* : Arrow

Inheritance@* : Arrow

NodeProperty : NodeAttribute

ArrowProperty : ArrowAttribute

EString

Containment : ArrowAttribute

EString

EBoolean

EDataType

Value : NodeAttribute

EString

NodeVisualization : NodeAttribute

EString

ArrowVisualization : ArrowAttribute

F I G U R E 6.2: An illustration of the enriched graph in the DPF Editor

As explained in section 5.4.1, the enriched graph contains extensions of
the core metamodel with functionalities such as containment, support for
visualization data, value and inheritance. When running the template wiz-
ard, we create an instance of the enriched graph such that we can develop
new templates. Figure 6.3 below, illustrates the current modelling environ-
ment in the Model Editor, where we have excluded the propertysheet for
illustration purposes.

F I G U R E 6.3: An illustration of a simple UML Class diagram template with
Attributes specified as containment-nodes.

To the right in the figure we see the palette containing elements from
the metamodel adjacent above, which in this case is the enriched graph as
seen in figure 6.2. In the center of the figure we see the model window,
which is where we create the instances of the elements in the palette. The
potency and mutability of model elements can be set by selecting the model
element of concern, and the properties of that model element can be set
in the propertysheet below the model window.

The model we have created in figure 6.3 above, is a simplified class dia-
gram of a Clabject with support for Attributes and References. By specifying

83

Chapter 6. Demonstration

the Attribute as containment, we were able to specify that Attributes is con-
tained inside the Clabject much like Features is contained in Clabjects in
Melanee. This allows nesting of Attributes inside Clabjects and ensure that
the Attribute is replicated according to the replication rules as defined in
chapter 5. We have also defined that Attributes will have a mutability of 1,
which means that name of the Attribute can only be set once. When adding
Attributes to Clabjects, the mutability of the Attribute will be decreased
to 0, and it is thereby not possible to change the name of the Attribute
any more. This ensures a consistent name of the Attribute throughout the
meta-hierarchy. Because we defined the Attribute arrow as Containment,
the Attribute will be automatically generated at sub-sequent metalevels,
and the value of the Attribute can be set whenever the modeller wants to.

Figure 6.4 below illustrates an instance of the template metamodel in
the abstract syntax. To model the uppermost metamodel in the Plant ex-
ample, we begin by dragging a new Clabject from the palette to the right,
and into the modelling window in the center as seen in figure 6.4.

F I G U R E 6.4: An illustration of metalevel 0 in the Plant example.

As we have seen in the plant example earlier in this thesis, we will begin
modelling by defining a Plant Clabject with a potency of 2. We also add a
name Attribute to the Plant with a potency of 2. As the name Attribute is
being instantiated, its mutability decreases to 0, which means we can not
change its name at any sub-sequent metalevel.

By looking at figure 6.4, we may realize that when creating new Clabjects,
none of its containing Attribute or Method Nodes are replicated along
with it. This is because Clabjects are template elements. When creating
instances of template elements, it would not make any sense to replicate
the containing elements such as Attribute and Method Nodes. Instead we
only replicate the whole template metamodel to allow linguistic extension,
which is hidden from modellers for improved useability.

Figure 6.5 on the next page, illustrates an instance of the metamodel
we created in figure 6.4 above. The potency of the Plant instance named
Tree has been decreased to 1, as well as its containing attribute has been

84

Chapter 6. Demonstration

automatically replicated with its potency decreased to 1 as well.

F I G U R E 6.5: An illustration of metalevel 1 in the Plant example.

As we can see in figure 6.5 above, the name of the attribute stays the
same, and can not change because its mutability is 0. At this metalevel,
we have also added a linguistic extension of named LumberJack, which
is an instance of the replicated Clabject in the metalevel adjacent above
(metalevel 0). It is also possible to add connections between linguistic and
ontological elements as we described it in section 5.1.2, which is realized
in form of a Reference from LumberJack to Tree. By instantiating this meta-
model we are finally at instance level, and the following metamodel takes
place:

F I G U R E 6.6: An illustration of the metalevel 2 in the Plant example.

The potency of each model element is now 0, which means we are at
instance level and values must be set on the attributes. However, by looking
at the metamodels in the Plant example as illustrated above, it is becoming
evident that even with such small models as in the Plant example, it is
becoming increasingly difficult to model with the abstract syntax. The next
section will therefore demonstrate how we can visualize the Plant hierarchy
in a concrete syntax instead.

85

Chapter 6. Demonstration

6.2 The Concrete Syntax

To model the Plant hierarchy in a concrete syntax, we first need a visual
metamodel to define how the model elements will be visualized in the con-
crete syntax. The idea is that we create a mapping from each element in
the diagram metamodel (abstract syntax) to the corresponding element in
a visual metamodel (concrete syntax). The intent of the visual metamodel
si that it will describe how each model element in the diagram metamodel
should be visualized in the corresponding concrete syntax. Figure 6.7 be-
low, illustrates an overview of the process of the mapping between the
diagram metamodel and the visual metamodel, the mapping between th
abstract and the concrete syntax.

Attribute@* : DeepNode

Attribute@* : DeepArrow

mapping

Diagram metamodel Visual metamodel

mappingClabject@* : DeepNode ?

?

Reference@* : DeepArrow mapping ?

F I G U R E 6.7: Abstract to Concrete syntax mapping.

To visualize the abstract syntax in a concrete syntax, we therefore need
to create a visual metamodel that describes the visualization of the abstract
syntax. There already exists an editor for modelling visual elements which
we can use to visualize the template in a concrete syntax. For example
to visualize the Clabjects, we need a structure that allows compositions
of nodes. To do this, we can create a composite Node as illustrated in fig-
ure 6.8 below.

F I G U R E 6.8: The visual metamodel used in this demonstration.

86

Chapter 6. Demonstration

As we see in figure 6.8, we can add new Nodes and Arrows to the left
in the visual editor, and edit the properties of each visual element to the
right. We decided to create a new Node named Clabject, which is com-
posite, has rounded corners and a white background-color for improved
visualization. To visualize the nodes that will be composed inside the Clab-
ject, we need to specify composed Arrows. The Visualization editor will
then create compartment-elements for the elements that will be contained
in the Clabject such as Attributes. In fact, all outgoing composed arrows
from any composite Node is contained in the composite Node. Lastly and to
visualize references between Clabjects, we created a UnComposite Arrow.
UnComposite arrows will be visualized with the same visualization as in
the abstract syntax (as an arrow-connection). The intended mapping we
want in this example is illustrated in figure 6.9 below.

Visual metamodel

Composed : VArrow

isComposed = true

Clabject : VNode

isComposite = true

Attribute@* : DeepNode

Attribute@* : DeepArrow

Diagram metamodel

Clabject@* : DeepNode

Reference@* : DeepArrow

UnComposed : VArrow

isComposed = false

mapping

mapping

mapping

F I G U R E 6.9: Intended abstract to concrete syntax mapping.

There already exists a wizard which can take care of the mapping be-
tween the abstract and concrete syntax, but we argue that it is easier to
conceptualise how each abstract syntax element should be visualized by
directly looking at the abstract syntax instead. By adding visualization data
in the template metamodel, we can define how each model element in the
abstract syntax should be visualized in the concrete syntax. Figure 6.10
below, illustrates the new template model with added visualization data
for the model elements.

F I G U R E 6.10: The new template metamodel with added visualization data.

87

Chapter 6. Demonstration

The mapping of the model elements is done by name, so by specifying
Clabjects as Clabject, the Attribute Arrow as Composed and the Reference
Arrow as UnComposed, the editor will automatically map these elements
to the corresponding Clabject, UnComposite and Composed elements in the
visual metamodel. To initiate the model mapping, we will open the tem-
plate visualization wizard as illustrated in figure 6.11 below.

F I G U R E 6.11: Choosing template and visualization model in
the template visualization wizard.

By default, the wizard will load the default class diagram template as
we presented it in chapter 5. The wizard will also load the default visual
metamodel by default. Thirdly, it is possible to specify additional signatures
to allow additional constraints on the model, but we will not discuss this
any further as the specification of signatures is outside the scope of this
thesis. By choosing the template metamodel and the visual metamodel as
illustrated in figure 6.11, we can click Finish and the wizard will initiate
algorithm 2. As explained in section 5.5, algorithm 2 will parse over the
template metamodel for visualization data, and automatically map each
element to the corresponding visual element such as in figure 6.9 above.
When the mapping is finished, we can start modelling the Plant example
as illustrated in figure 6.12 on the next page.

To make it easier to find the model elements we need in the palette, the
editor is also filtering out model elements that should not be in the palette.
As we can see, the concrete syntax are more visually appealing and easier
to conceptualize than its abstract syntax. A Clabject is simply visualized
as a rectangle with rounded corners, along with containing compartments
for containing elements such as Attributes. The potency of each model el-
ement is visualized as a number which is raised and visualized next to the
type of the model element. Mutability is currently not visualized, but can
be accessed through the propertysheet along with the name and potency

88

Chapter 6. Demonstration

of the Attribute.

F I G U R E 6.12: An illustration of the plant hierarchy in its concrete syntax.

Figure 6.12 above, illustrates the modelling environment of the visual-
ization editor. By illustrating the plant example we modelled earlier in this
chapter, we easily see that this concrete syntax is much easier to model with
than the abstract syntax. In fact, the visualization editor is still modelling
with the diagram elements from the abstract syntax by adding them to the
palette. When a diagram element is dragged from the palette and into the
modelling window, the editor is checking what visual element the diagram
element is mapped to, and creates the corresponding concrete syntax. The
visualization editor is thereby keeping track of the diagram metamodel,
and creates a corresponding concrete syntax. By creating a model element
in the concrete syntax, it is also created in the abstract syntax as well. We
can open the Model editor at any time and edit the abstract syntax. When
we are opening the visualization editor again, the corresponding concrete
syntax will be created based on the mapping of the diagram elements. This
way, we have a two-way synchronization between the abstract and the
concrete syntax.

89

Chapter 6. Demonstration

To be able to set the values of NodeAttributes, we have created an addi-
tional dialog as illustrated in figure 6.13 below. The dialog can be accessed
by clicking on the name of the Node.

F I G U R E 6.13: The dynamic dialog used for setting values of NodeAttributes.

Since NodeAttributes is a kind of properties of a Node, we decided to
call the dialog Set Properties. The dialog is organized with a tab for the cur-
rent Node we want to edit NodeAttributes for, such as the name Attribute.
In the current template we only have one NodeAttribute attached to the
name Attribute, but as more NodeAttributes are attached, it will dynam-
ically be added to the table in the dialog. With this dialog, it is possible
to set the value and mutability of any NodeAttributes of any Node, includ-
ing Clabjects. The names and mutability can be set simply by clicking on
the tableitem, edit the value and click the Ok button. When it comes to
Values however, we recall that values of DataNodes can be set either by
the predefined set of datatypes in EMF or a user defined value. We have
therefore defined that the column for values will consist of combo-boxes
instead of only text. With combo-boxes, we can either specify datatypes
from the drop-down list, or set our own value. We have also developed an
equivalent for ArrowAttributes, but we will not demonstrate it here since
it is basically the same dialog.

90

Chapter 6. Demonstration

We may recall that we specified default templates in chapter 5. The next
section will demonstrate the default template in practice.

6.3 The Default Class Diagram

In chapter 5 under the development and implementation of the Model
Editor, we developed a default template metamodel of a UML Class diagram
as illustrated in figure 6.14 below. The template is based on the enriched
graph as we illustrated it in figure 6.3, in the beginning of this chapter.

F I G U R E 6.14: The default template of a UML Class diagram in DPF.

In addition to the specifications in the template we created in the begin-
ning of this chapter, the default template also has support for Methods as
well additional properties of Clabjects, Attributes and Methods. Addition-
ally, for the visualization of the template metamodel, we have also created
a default visual model as illustrated in figure 6.15 below.

F I G U R E 6.15: The default visual metamodel in DPF.

The default visual metamodel consists of an UnComposite and a Compos-
ite Node. Composite represent Nodes that can contain other Nodes such as

91

Chapter 6. Demonstration

Clabjects, and UnComposite represents Nodes that can not contain other
Nodes. Secondly, the visual metamodel consists of a Composed and an Un-
Composed Arrow. Composed will represent the Arrows that is contained
in Composite Nodes. These arrows will not be visualized in the editor, as
they only represent the connection between for example a Clabject and an
Attribute. The UnComposed Arrow on the other hand, will represent the
arrows between Clabjects such as References.

With the default template and the default visual metamodel, we can run
the template visualization wizard with the default settings, create a new
visualization metamodel and start modelling with the default template in
its concrete syntax. Figure 6.16 below illustrates the current visualization
of Clabjects, where we have added visualization for visibility on attributes
and methods in standard UML notation [24].

F I G U R E 6.16: Visualization of Plant based on the default template.

Figure 6.16 above illustrates the Plant Clabject with added name and
family Attributes, and getName() and getFamily() Methods. Looking back
at the default template metamodel in figure 6.14, we realize that the spec-
ification of Methods consists of a Method Node along Parameter Nodes
and its attached NodeAttributes and ArrowAttributes. To specify Methods,
we therefore need to add a new Method Node to Plant, as well as adding
the corresponding Parameter Nodes of that Method. The current imple-
mentation of the visualization editor however, does not support nesting
more than a Node inside another Node. It is therefore necessary with an
additional dialog where we can specify the Parameters of the Method as
well, such as the Method dialog illustrated in figure 6.17 below.

F I G U R E 6.17: Create new method dialog.

As we can see, the current implementation of the Method dialog is very
limited. It is currently only possible to specify name, potency and return
type of Methods. This means that the only Methods supported in the vi-
sualization editor is Methods with no input parameters, only a return pa-
rameter. We may also notice that the editor only supports return values

92

Chapter 6. Demonstration

of predefined datatypes from EMF. For the visualization editor to be fully
supporting UML Class diagrams, we therefore need to extend the Method
dialog with support for input parameters as well as support for parame-
ters with Clabjects as parameter-type. Methods are however only specific
for this kind of template, (UML Class diagram), and would not be used
for other templates. To add such a dialog for Methods, we need template
specific code. Possibly this can be predefined in the editor together with a
set of predefined templates. Otherwise we need to explore the possibility
of extending the editor with plugins for new types of dialogs and function-
alities for templates. Whether we will predefine template code for dialogs,
or explore the possibility of additional plugins for dialogs will be discussed
under further work in chapter 7.

When it comes to editing Methods after they are added on the other
hand, we can use the properties dialog as illustrated in figure 6.18 below.

F I G U R E 6.18: The dynamic dialog in the process of editing the
NodeAttributes of a Method Node.

However, the dialog as illustrated in figure 6.18 above currently does
not support editing properties at more than one composition-level. This
means it is currently only possible to edit the Method Node, while it is not
possible to edit any of the Parameter Nodes. It is not possible to edit any
Node that is contained in a Node which is contained in a Node. We can
however add support for more than one composition-level in the future by
adding extra tabs in the dialog for subcontainers such as Parameter Nodes,
but this is regarded as outside the scope of this thesis.

At this point we have demonstrated the Visualization Editor with focus
on UML Class diagrams only, but the Visualization Editor can be used for
other types of visualizations as well. Currently the visualization editor
only supports a small range of visualization parameters, but the current
editor does support modelling an arbitrary number of compartments. It is
also possible to change the color of the model elements, as well as setting
whether the edges are rounded or not. The next section will present the
current possibilities of the visualization Editor.

93

Chapter 6. Demonstration

6.4 Customizable Concrete Syntax

To illustrate the current possibilities of the visualization editor, we have
created an example of a House with four compartments; Bathroom, Dog-
House, Livingroom and ToolShed as illustrated in figure 6.19 below.

F I G U R E 6.19: An example of a house with a garden and a garage.

The House also has a Garden with Plants, as well as a Garage. To illustrate
the possibility of changing color of Nodes, we have set the color of the House
to red and the Garden to green. To illustrate the possibility of changing
shapes of UnComposite Nodes, we have defined the Garage as a rhombus
as illustrated in figure 6.19 above.

First of all, as UML Class diagrams already has a predefined visual syntax
with Attributes in the top-most compartment and Methods in the bottom-
most compartment in Clabjects, it may not be as obvious for other types
of diagrams. We have therefore added a label on each compartment, il-
lustrating what type of elements the compartment is containing. We also
may notice that unless programmatically specified such as for UML Class
diagrams, the compartment-elements are only visualizing the name of the
Node itself. As stated earlier in this thesis, it is currently only possible to
compose nodes at one composition-level. This makes it difficult to visualize
for example Methods appropriately, as the elements in a compartment may
contain nodes themselves such as Parameters in Methods. Unless program-
matically specified, it is neither possible to edit the properties of a Node
at more than one composition-level, nor possible to add Nodes at more
than one composition-level, nor possible visualize compartment-elements
at more than one composition-level. As we add more compartments and
begin modelling other types of diagrams than class diagrams, it is becom-
ing evident that it is necessary to add support for appropriate visualizations
of compositions at more than one composition-level.

94

Chapter 6. Demonstration

Secondly, by looking at the Garden and its Plants, we notice that each
Plant have a name and family property. These properties are dynamically
added to the properties dialog, and each property of the Plant can be de-
fined in this dialog. Possibly this dialog can also be used to define new
properties of Nodes, which will allow a user friendly interface for specifying
additional properties of Nodes and Arrows. We also remember that earlier
in this thesis we argued that by defining visualization data as properties of
Nodes and Arrows, we could make it possible to define the visualization of
each model element on-the-fly. Modellers could possibly start modelling
the concrete syntax by first modelling in a default concrete syntax, then
define the visualization of each model element through the property dialog
as illustrated in figure 6.20 below.

F I G U R E 6.20: Defining concrete syntax on-the-fly.

Figure 6.20 illustrates the definition of visualization data for Garden. In
the future, the visual elements in the visual metamodel we create could
be added as a list in the property dialog. Modellers could then possibly de-
fine the concrete visualization by specifying the visualization value to the
visualization of concern. Through the mapping algorithm, we could auto-
matically remap the visualization as the visualization property is changed,
and this way modellers could easily see how the visual elements are visual-
ized in practice. These mechanisms are however outside the scope of this
thesis, and will be discussed in further work instead.

95

CHAPTER7
Conclusion

The goal with the research presented in this thesis was to explore a diagram-
matic approach to deep metamodelling. In this chapter we will summarize
the outcomes and results obtained from this research compared to previ-
ous efforts. We will also present some suggestions for further work with
basis on the current implementation.

7.1 Summary

In the introduction, we briefly mentioned that previous efforts to deep
metamodelling have never considered a fully diagrammatic approach. There
exists tools such as Melanee that supports a diagrammatic environment for
deep metamodelling, but it is only considering modelling with the whole
meta-hierarchy in a single view. At Bergen University College, there had
been developed a fully diagrammatic editor for traditional metamodelling
that supported an arbitrary number of metalevels [28]. By extending this
editor with basis on the work of Atkinson and Kühne [9], we have now
overcome the three major limitations with traditional metamodelling. We
introduced the concept of potency to allow deep instantiation. Secondly,
potency made it possible to provide a simple and well-formed solution to
distinguish between dual classifications such as the dual Class / Object
facets of Clabjects. Thirdly, potency made it possible to keep the linguistic
and ontological metamodels in a single dimensional hierarchy as opposed
to a separation into a two-dimensional meta-hierarchy.

Interestingly, by arranging linguistic and ontological metamodels in a
single dimension we also made it possible to develop our own templates of
linguistic metamodels. Instead of having a two dimensional meta-hierarchy
where the linguistic metamodel is hardcoded into the editor, we are now
able to develop almost any type of linguistic metamodel and create on-
tological metamodels based on the linguistic metamodel. By replicating
the linguistic metamodel at each ontological metalevel, we also made it
possible to linguistically extend the ontological metamodels. This way we
made it possible to adhere to strict metamodelling, and at the same time
keep a single-dimensional modelling hierarchy.

96

Chapter 7. Conclusion

Through this thesis, we have achieved a fully diagrammatic editor for deep
metamodelling in both:

Abstract Syntax
We have introduced a fully diagrammatic editor for the abstract syntax,
which supports the development of linguistic templates. With these lin-
guistic templates, we are able to develop ontological meta-hierarchies with
support for deep instantiation and mutability as well as linguistic extension.
We have also developed a default template of a UML Class Diagram, which
can be used to model deep ontological metamodels of class diagrams.

Concrete Syntax
Through the extension of the DPF Editor with support for deep metamod-
elling, we are now able to develop almost any kind of DSML that suits
our needs. However, as these models grow bigger, modellers will find it
harder to gain an overview of the DSMLs. The DPF Visualization editor has
therefore been extended with support for the specification of a concrete
syntax for the template metamodels throughout the meta-hierarchy. To
make it easier to map the abstract syntax to the concrete syntax, we have
developed an algorithm that parses the abstract syntax for visualization
data. By adding visualization data in the templates, we can thereby auto-
matically map the abstract syntax to the concrete syntax.

We have also extended the core metamodel in DPF from a directed multi-
graph to an E-Graph.

E-Graph
Through the implementation of the E-Graph [48], we made it possible to
specify datatypes directly from the predefined set of datatypes in EMF. We
also made it possible to specify properties of nodes and arrows such as
visibility, isStatic, isFinal in the default class diagram template. With the
core metamodel extended to an E-Graph, we added a new graph between
the core metamodel and the template metamodel. We added an enriched
graph with support for nesting of nodes as well as providing a generic
solution for the definition of values and visualization data. With this en-
riched graph, it is easier to develop new templates, and its easier to map
the modelling-hierarchy to other systems.

7.2 Further Work

The DPF Editor still has a way to go in terms of offering a fully functional
and stable editor for deep metamodelling. This section will therefore briefly
present the current major shortcomings of the editor along with possible
additional features and improvements. Hopefully these improvements will
draw the editor closer towards becoming a fully functional language work-
bench for deep metamodelling.

97

Chapter 7. Conclusion

7.2.1 Current Shortcomings

The editor we implemented in this thesis should be regarded as a prototype
as it has not been properly tested yet, and it still lacks functionality for it
to be regarded as a fully functional editor for deep metamodelling. The
current shortcomings can be summarized as follows:

Constraints: As briefly mentioned earlier in this thesis, the DPF Editor
currently has support for Constraints on Arrows, but currently does
not support deep instantiation of Constraints. This is a much needed
feature, and should be added in the future. Secondly, we need to add
support for the definition of potency specific constraints such as the
need to instantiate attributes with a datatype and slots with a value.
We also need to restrict containing elements from being instantiated
with a higher potency than the model element it is contained in.
Thirdly, we need constraints for the definition of mutability. Lastly
we need a proper naming constraint to ensure that model elements
does not have the same name as linguistic model elements.

Datatypes And Values: We need to ensure proper semantics of datatype
hierarchies, such as when changing the datatype of an element, the
new datatype needs to be below the previous type in the typehier-
archy. A datatype can not be instantiated as a supertype of its type,
and proper semantics are needed to ensure this in practice.

Additional Visualization Structures: Currently the visualization editor
does not update properly after modifying visual elements. For exam-
ple when attributes are automatic generated, they are not visualized
in the clabject until the modelling window is closed and opened again.
The current visualization editor is also very rigid, as it is only possible
to model UML Class-like structures of compositions. It is however
possible to model with additional structures of model elements that
is not composit, but to make the visualization editor more tailored to
the domain of concern, we argue that it is necessary with additional
structural features.

Code Duplication: When we implemented the E-Graph, we did not put
a large effort into generalizing code for re-use. The code also needs
to be properly tested to ensure overall system correctness.

API Consistency: Even though it is not a shortcoming in the tool itself, all
the projects in DPF is relying on the DPF Core API, which means we
are prone to error due to modifications in the DPF core metamodel.
The biggest problem is however due to the possibility of rendering
old metamodels useless. A migration strategy is therefore needed to
ensure system correctness, both for the API and the models them-
selves.

98

Chapter 7. Conclusion

7.2.2 Additional Features In The Model Editor

There is still functionality missing in the the DPF Editor for it to be consid-
ered a fully useable language workbench for deep metamodelling. In this
section we will therefore propose some additional features that hopefully
will make the Model Editor reach a more mature state. The proposed fea-
tures can be summarized as follows:

Inheritance: In this thesis we have only considered the concept of in-
stantiation as a mechanism for modellers to define type-hierarchies.
However, we argue that to provide a well-formed meta-hierarchy, it
is in some cases useful to support inheritance along with instantia-
tion as well. In some cases it is more natural to define generalized
model elements and inherit from these model elements in a single
metamodel.

Constraints on Node-/ArrowAttributes: It will be useful to extend the
editor with support for Constraints on NodeAttributes and ArrowAt-
tributes as well only regular Arrows. This would be especially useful
in cases such as for example when modelling Method-Parameters in
UML Class diagrams. In the case of the default template we created
earlier in this thesis, we specified the parametertype with both an Ar-
row to a Clabject as well as a NodeAttribute as illustrated in figure 7.1
below. It should however only be possible to specify one parameter-
type per parameter, and a XOR constraint between the Arrow to the
Clabject and the NodeAttribute would therefore be a useful feature.
The same principles should be added to ArrowAttributes as well.

Parameter

Method Method : Arrow Clabject

ParamType : Arrow

Parameter : Arrow

ParamType : NodeAttribute

EDataType

F I G U R E 7.1: Constraint between a NodeAttribute and an Arrow.

Model Import: We may recall that in the comparison analysis in chap-
ter 4, we revealed that Metadepth has support for importing external
models. As the DPF Editor reaches a more mature state, importing
external models may be a much needed feature and should there-
fore be investigated further. By supporting import of models into an
existing model, we can provide libraries of functionality which we
can import into other models.

99

Chapter 7. Conclusion

Query Language: When executing the replication rules we defined ear-
lier in this thesis, performing type-checking, traversing the metamod-
elling stack or similar, we need to iterate through a large number of
model elements programmatically. As the models are growing bigger,
the process of retrieving model elements are getting slow. To speed
up this process and to make these algorithms easier to understand
and modify, it would be useful to add support for a query language
instead. This could be especially useful in the process of defining
specific behaviour of certain linguistic metamodels, such as function-
ality in the enriched graph. In addition to speeding up the retrieval
of model elements and make it easier to specify for example repli-
cation rules, a query language could run queries in the background
to provide on-the-fly validation of model elements such as ensuring
proper typing of datatypes or similar.

Default Template Diagram Improvements: The current implementation
of the default template (UML Class diagram) currently only supports
clabjects, but lacks support for packages and enums. A proper foun-
dation for interfaces other than the isInterface property has also not
been established. Secondly and with inspiration from EMF, it could
also be useful to be able to express new types of data types that
does not exist in the list of predefined data types in EMF. Support for
adding annotations should also be investigated further.

Predefined Diagrams: As the current implementation only supports the
definition of UML Class Diagrams, it would be useful to implement
additional templates for other types of diagrams as well. Whether
these diagrams should be defined through a type of plug-in, or if they
should be defined programmatically is also something that needs to
be elaborated for.

Modelling Modes For Linguistic Extension: In the comparisons analy-
sis, we also noticed that both Metadepth and Melanie features mod-
elling modes restricting model elements to be linguistically extended
or not. (In Metadepth this is referred to as strict and extensible mod-
elling modes). In certain situations this may be a useful feature in
DPF as well, and we therefore argue that this should be investigated
further.

Transformation To A Traditional Metamodelling Stack: We also need
to discuss the relevance of transforming the deep metamodelling
stack back to a traditional metamodelling stack. This subject was
in the focus on Alessandro Rossini’s Ph.D. thesis, which provides a
formal approach to the problem [34].

100

Chapter 7. Conclusion

7.2.3 Concrete Syntax Improvements

Even though the core functionality of deep metamodelling is established
in the Model Editor, it is necessary to extend the Visualization Editor to
provide a better user experience. This section will propose some additional
features that may benefit the Visualization Editor in the future. The pro-
posed features can be summarized as follows:

Improved customization of the concrete syntax
As mentioned in chapter 6, with the additional visualization data in the
template model, we could use the mapping algorithm to automatically
map each element in the abstract syntax to its corresponding concrete syn-
tax. Conseptually, modellers could begin modelling in a default concrete
syntax much like the current abstract syntax, and modellers could specify
the visualization of each model element on-the-fly through the property
dialog. Figure 7.2 below, illustrates a possible scenario where a modeller
is changing the visualization of a model element.

F I G U R E 7.2: Defining visualization through the property dialog.

All NodeAttributes and ArrowAttributes would still be hidden from users
in the Visualization Editor, but can be accessed through the property dialog
instead. In our proposed solution, modellers could begin with a default
concrete syntax such as the current abstract syntax, and then specify the
concrete visualization with the property dialog. Modellers would have
the current concrete visualization in front of them, and by specifying the
visualization data of each model element, modellers could see the result
upfront. Modellers would no longer need to go through the current process
of creating a visual metamodel, specifying visualization data in the abstract
syntax, then running the Template Visualization Wizard. The idea is that
modellers simply would start by creating a new metamodel in a default
concrete syntax, and then specify the visualization of each element directly.
The result is that modellers have better control over how the concrete
syntax will look like. Additionally we realize that the visualization data
will endure as long as the DeepNode or DeepArrow it is attached to. This
means that if modellers want to, they could re-map the visualization to
other visualizations at different metalevels. In terms of the Plant example,

101

Chapter 7. Conclusion

modellers could choose the Plant to be visualized as a plant, the Tree as a
tree and NorwaySpruce as a norway spruce.

Secondly, visual elements could be created according to how we want
the model elements in the concrete syntax to be visualized. Ideally these
elements should also be accessed from a list in the property dialog where
modellers can choose what visual element each model element should be
mapped to.

Extended Property-Sheet
Instead of editing NodeAttributes and ArrowAttributes in the property dia-
log, there should be investigated if its possible to do this in the property-
sheet instead. It should be investigated if its possible to extend the property-
sheet with possibility of not only editing a single Node or Arrow, but also
its attached DataNodes (NodeAttributes and ArrowAttributes).

Additional Composition-Levels
In the current implementation of the visualization editor, it is only possible
to model compositions of nodes with containing nodes. It is not possible
to compose nodes in another node that is already contained in a third
node, meaning it is not possible to model compositions of more than one
composition-level. As an example, we may recall the composition of Meth-
ods inside Clabjects. Currently there are no structure to provide visual-
ization of what Parameters the Methods are containing. This is clearly a
drawback with the current implementation, and the visualization editor
should therefore be extended to support more than one composition level.

7.2.4 Fully Functional Code Generator

In chapter 4 we developed a lightweight code generator, that can gener-
ate Metadepth models based on DPF models. It would be of great use to
complete the implementation so that it is fully functional, and we could
benefit from the functionalities of Metadepth as a textual language as well.
To take it even further, we propose that a code generator that can import
Metadepth models that can be used in the DPF Editor as well. This way,
the DPF Editor could import Metadepth models, modify them graphically,
and then save them back to Metadepth format and benefit from its code-
generation capabilities amongst others.

102

List of Figures

1.1 Limitations with traditional metamodelling. 2

2.1 Internal model and persistence to an external model. 7
2.2 An illustration of an undirected and a directed graph. 9
2.3 A basic two-level metamodelling example 11
2.4 A linear metamodelling stack 12
2.5 OMGs four-level meta-hierarchy. 14
2.6 EMOF classes (meta-metamodel). 15
2.7 Structural and attached constraints. 15
2.8 A Model transformation example from a PIM to a PSM. . . . 16
2.9 Representation of how Ecore fits the MOF hierarchy. 17
2.10 Definition of a platform independent model in EMF. 17
2.11 Generator model in EMF. 18
2.12 An illustration of a simplified view of the EMF metamod-

elling hierarchy. 18
2.13 An illustration of the current architecture of the DPF Work-

bench. 19

3.1 An example of a three-level meta-hierarchy using loose meta-
modelling. 22

3.2 A three level meta-hierarchy using strict metamodelling. . . 23
3.3 Multiple classification. 24
3.4 Two fundamental meta-dimensions - Linguistic and Onto-

logical. 25
3.5 Unification of linguistic classifiers. 26
3.6 Plant as a powertype. 27
3.7 Deep instantiation. 28
3.8 Deep instantiation with linguistic and ontological typing. . 29
3.9 An illustration of the example given in figure 3.8, rearranged

to a linear, one dimensional hierarchy. 30
3.10 Deep instantiation with linguistic extension. 31

4.1 MetaDepth’s linguistic metamodel, taken from [35]. 37
4.2 The plant model as it would be modelled in Metadepth. . . 38
4.3 Melanee’s linguistic metamodel, also called the Pan Level

Metamodel (PLM). 39
4.4 The plant model as it would be modelled in Melanee. 42
4.5 A simplified illustration of the core metamodel in DPF. . . . 44

104

Chapter 7. Conclusion

4.6 A simplified illustration of the diagram metamodel in DPF. . 44
4.7 An illustration of the process of visualizing models in the

DPF Editor. 45
4.8 A simplified illustration of the current visual metamodel. . . 46
4.9 An illustration of a mapping between an instance of the

diagram metamodel and an instance of the visual metamodel. 46
4.10 An illustration of the current model mapping solution in the

visual editor. 47
4.11 A concrete example of synchronization between the abstract

and concrete syntax as it was mapped in figure 4.9. 47
4.12 The structure of the visualization components in the DPF

Editor and the visualization editor. 48

5.1 An illustration of the core metamodel in DPF with added
potency. 51

5.2 The current layout in DPF, with added potency. 51
5.3 An illustration of deep metamodelling in DPF, with linguistic

/ ontological typing. 53
5.4 A simple default linguistic metamodel in DPF. 54
5.5 An illustration of the Plant example where it is currently not

possible to linguistically extend ontological elements. 55
5.6 Mapping between the linguistic metamodel in Metadepth

as seen in the centre, with the core metamodel in DPF to
the right and the default metamodel in DPF to the left. . . . 58

5.7 An illustration of the DPF source-models to the left and the
generated Metadepth models to the right. 60

5.8 The Entity-Attribute-Value model, modelled in the DPF Model
Editor . 61

5.9 The core metamodel in DPF with added potency and muta-
bility . 65

5.10 The new core metamodel in DPF with added potency, mu-
tability, NodeAttribute, ArrowAttribute and DataNode. . . . 67

5.11 The extended diagram metamodel in DPF with added sup-
port for NodeAttribute, ArrowAttribute and DataNode. . . . 68

5.12 A visualization of the E-Graph as it is implemented in the
DPF Editor. 68

5.13 The extended default metamodel in DPF. 69
5.14 The current enriched graph in the DPF Model Editor 71
5.15 A Platform Independent Modelling Hierarchy in the DPF

Model Editor. 73
5.16 An illustration of the current template of a UML Class dia-

gram in DPF. 74
5.17 An illustration of the visual metamodel used to visualize

UML Class diagrams in a concrete syntax. 75
5.18 An illustration of the enriched graph in the DPF Model Edi-

tor, with added support for visualizations 76

105

Chapter 7. Conclusion

5.19 An illustration of a simplified UML Class diagram template
with visualization data. 77

5.20 A simple illustration of metalevel 0 of the plant example,
illustrated in the visualization editor. 79

5.21 A simple illustration of metalevel 1 of the plant example,
illustrated in the visualization editor. 80

6.1 An overview of the wizards provided in DPF. 82
6.2 An illustration of the enriched graph in the DPF Editor . . . 83
6.3 An illustration of a simple UML Class diagram template with

Attributes specified as containment-nodes. 83
6.4 An illustration of metalevel 0 in the Plant example. 84
6.5 An illustration of metalevel 1 in the Plant example. 85
6.6 An illustration of the metalevel 2 in the Plant example. . . . 85
6.7 Abstract to Concrete syntax mapping. 86
6.8 The visual metamodel used in this demonstration. 86
6.9 Intended abstract to concrete syntax mapping. 87
6.10 The new template metamodel with added visualization data. 87
6.11 Choosing template and visualization model in the template

visualization wizard. 88
6.12 An illustration of the plant hierarchy in its concrete syntax. 89
6.13 The dynamic dialog used for setting values of NodeAttributes. 90
6.14 The default template of a UML Class diagram in DPF. 91
6.15 The default visual metamodel in DPF. 91
6.16 Visualization of Plant based on the default template. 92
6.17 Create new method dialog. 92
6.18 The dynamic dialog in the process of editing the NodeAt-

tributes of a Method Node. 93
6.19 An example of a house with a garden and a garage. 94
6.20 Defining concrete syntax on-the-fly. 95

7.1 Constraint between a NodeAttribute and an Arrow. 99
7.2 Defining visualization through the property dialog. 101

106

List of Tables

2.1 Abstract syntax of a sum expression. 7
2.2 Different concrete syntaxes of the sum expression. 8

4.1 Summary of the comparison analysis between Metadepth,
Melanee and DPF. 49

108

Abbreviations

OOP Object Oriented Programming
MDE Model Driven Engineering
API Application Programming Interface
GPL General Purpose Language
DSML Domain Specific Modelling Language
CASE Computer-Aided Software Engineering
MOF Meta Object Facility
EMOF Essential Meta Object Facility
CMOF Complete Meta Object Facility
SMOF Semantic Meta Object Facility
OMG Object Management Group
XMI XML Meta-data Interchange format
UML Unified Modelling Language
EMF Eclipse Modelling Language
DPF Diagram Predicate Framework
OCL Object Constraint Language
MDA Model Driven Architecture
PIM Platform Independent Model
PSM Platform Specific Model
UAM Universidad Autónoma de Madrid
EVL Epsilon Validation Language
EOL Epsilon Object Language
EGL Epsilon Generation Language
ER diagram Entity Relationship diagram
PLM Pan Level Model
BUC Bergen University College
UOB University Of Bergen
FOL First Order Logic
GS Generalized Sketches
DPL Diagrammatic Predicate Logic
GEF Graphical Editing Framework
PLM Pan Level Model
LML Level Agnostic Modelling Language
MOFM2T MOF Model to Text Transformation Language
PIMH Platform Independent Modelling Hierarchy

110

Bibliography

[1] Frances E. Allen. The history of language processor technology in
ibm. IBM Journal of Research and Development, 25(5):535–548, 1981.

[2] Andrew P Black. Object-oriented programming: some history, and
challenges for the next fifty years. Information and Computation, 231:
3–20, 2013.

[3] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE
COMPUTER SOCIETY-, 39(2):25, 2006.

[4] Dragan Gaševic, Dragan Djuric, and Vladan Devedžic. Model driven
engineering and ontology development, volume 2. Springer, 2009.

[5] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Model-
ing Language Reference Manual, The (2nd Edition). Pearson Higher
Education, 2004. ISBN 0321245628.

[6] Shane Sendall and Wojtek Kozaczynski. Model transformation: The
heart and soul of model-driven software development. IEEE software,
20(5):42–45, 2003.

[7] Cesar Gonzalez-Perez and Brian Henderson-Sellers. Metamodelling
for software engineering. Wiley Publishing, 2008.

[8] Krzysztof Czarnecki and Simon Helsen. Classification of model trans-
formation approaches. In Proceedings of the 2nd OOPSLA Workshop
on Generative Techniques in the Context of the Model Driven Architec-
ture, volume 45, pages 1–17, 2003.

[9] Colin Atkinson and Thomas Kühne. Rearchitecting the uml infras-
tructure. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 12(4):290–321, 2002.

[10] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A di-
agrammatic formalisation of mof-based modelling languages. In Ob-
jects, Components, Models and Patterns, pages 37–56. Springer, 2009.

[11] Mohamed Fayad and Douglas C Schmidt. Object-oriented application
frameworks. Communications of the ACM, 40(10):32–38, 1997.

[12] David S Platt. Introducing Microsoft. Net. Microsoft press, 2002.

112

Chapter 7. Conclusion

[13] Nicholas Kassem and Enterprise Team. Designing Enterprise Appli-
cations: Java 2 Platform. Addison-Wesley Longman Publishing Co.,
Inc., 2000.

[14] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-
guages: An annotated bibliography. Sigplan Notices, 35(6):26–36,
2000.

[15] Thomas Baar. Correctly defined concrete syntax for visual modeling
languages. In Model Driven Engineering Languages and Systems, pages
111–125. Springer, 2006.

[16] XML OMG. Metadata interchange (xmi) specification. URL:
http://www. omg. org/docs/formal/05-05-01. pdf (accessed October
10, 2005), 2000.

[17] Oxford English Dictionary Online, 2nd edition. http://www.oed.
com/, July 2003.

[18] M. Hack. Petri net language. Technical report, Cambridge, MA, USA,
1976.

[19] Faraz Ataie, Vincent P Aubrun, Leonid Erlikh, Michael Fischer, Michael
Fochler, Craig B Hayman, Daniel Hildebrand, James Hughes, Jeffrey L
Lambert, Douglas E Lee, et al. Computer-aided software engineering
facility, March 15 1994. US Patent 5,295,222.

[20] Marco Bernardo Vittorio Cortellessa and Alfonso Pierantonio. Formal
methods for model-driven engineering. 2012.

[21] Adrian Rutle. Diagram Predicate Framework: A Formal Approach to
MDE. PhD thesis, The University of Bergen, 2010.

[22] Meta Object Facility. Meta object facility (MOF) 2.0 core specification,
2003. Version 2.

[23] OMG CORBA and IIOP Specification. Object management group,
1999.

[24] Infrastructure Version 2.3. Object management group. unifed mod-
eling language (omg uml). http://www.omg.org/spec/, 2010.

[25] OMG Available Specification. Object constraint language, 2006.

[26] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven
software engineering in practice. Synthesis Lectures on Software En-
gineering, 1(1):1–182, 2012.

[27] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

[28] DPF: Diagram Predicate Framework. Project Web Site. http://dpf.
hib.no/.

113

http://www.oed.com/
http://www.oed.com/
http://www.omg.org/spec/
http://dpf.hib.no/
http://dpf.hib.no/

Chapter 7. Conclusion

[29] Zinovy Diskin and Boris Kadish. Variable set semantics for keyed gen-
eralized sketches: Formal semantics for object identity and abstract
syntax for conceptual modeling. Data Knowl. Eng., 47(1):1–59, Octo-
ber 2003. ISSN 0169-023X. doi: 10.1016/S0169-023X(03)00047-8.
URL http://dx.doi.org/10.1016/S0169-023X(03)00047-8.

[30] Raymond M Smullyan. First-order logic, volume 6. Springer, 1968.

[31] Bastian Kennel. A unified framework for multi-level modeling. 2012.

[32] Colin Atkinson and Thomas Kühne. The essence of multilevel meta-
modeling. In «UML» 2001—The Unified Modeling Language. Modeling
Languages, Concepts, and Tools, pages 19–33. Springer, 2001.

[33] James Odell. Power types. JOOP, 7(2):8–12, 1994.

[34] Alessandro Rossini. Diagram predicate framework meets model
versioning and deep metamodelling. Dissertation for the degree of
Philosophiae Doctor (PhD), 2011.

[35] Juan De Lara and Esther Guerra. Deep meta-modelling with
metadepth. In Objects, Models, Components, Patterns, pages 1–20.
Springer, 2010.

[36] Timo Asikainen and Tomi Männistö. Nivel: a metamodelling lan-
guage with a formal semantics. Software & Systems Modeling, 8(4):
521–549, 2009.

[37] Thomas Kuehne and Daniel Schreiber. Can programming be liberated
from the two-level style: multi-level programming with deepjava. In
ACM SIGPLAN Notices, volume 42, pages 229–244. ACM, 2007.

[38] Vijay Vaishnavi and William Kuechler. Design research in information
systems. 2004.

[39] Briony J Oates. Researching information systems and computing. Sage,
2005.

[40] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. Eclipse
development tools for epsilon. In Eclipse Summit Europe, Eclipse Mod-
eling Symposium, volume 20062. Citeseer, 2006.

[41] Colin Atkinson, Bastian Kennel, and Björn Goß. The level-
agnostic modeling language. In Proceedings of the Third Interna-
tional Conference on Software Language Engineering, SLE’10, pages
266–275, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-
3-642-19439-9. URL http://dl.acm.org/citation.cfm?id=
1964571.1964594.

[42] Yngve Lamoa, Xiaoliang Wang, Florian Mantz, Øyvind Bech, Anders
Sandven, and Adrian Rutle. Dpf workbench: a multi-level language
workbench for mde. Proceedings of the Estonian Academy of Sciences,
62(1), 2013.

114

http://dx.doi.org/10.1016/S0169-023X(03)00047-8
http://dl.acm.org/citation.cfm?id=1964571.1964594
http://dl.acm.org/citation.cfm?id=1964571.1964594

Chapter 7. Conclusion

[43] GEF (Graphical Editing Framework). http://www.eclipse.org/
gef/.

[44] Ola Bråten. Dpf visualisation, a tool for defining new concrete syn-
taxes for diagrammatic modelling languages. Masters Thesis in In-
formatics – Program Development, University of Bergen and Bergen
University College, 2013.

[45] Anders Sandven. Metamodel based code generation in dpf editor.
Masters Thesis in Informatics – Program Development, University of
Bergen and Bergen University College, 2012.

[46] Acceleo. Project Web Site.). http://www.eclipse.org/
acceleo/.

[47] Alessandro Rossini, Juan de Lara, Esther Guerra, Adrian Rutle, and
Yngve Lamo. A graph transformation-based semantics for deep meta-
modelling. In Applications of Graph Transformations with Industrial
Relevance, pages 19–34. Springer, 2012.

[48] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental
theory for typed attributed graph transformation. Springer, 2004.

115

http://www.eclipse.org/gef/
http://www.eclipse.org/gef/
http://www.eclipse.org/acceleo/
http://www.eclipse.org/acceleo/

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Structure Of Thesis

	2 Model-Driven Engineering
	2.1 The Current Situation
	2.2 Model Driven Engineering
	2.3 Domain Specific Modelling Languages
	2.3.1 Internal Representation And Persistence
	2.3.2 Abstract And Concrete syntax
	2.3.3 Diagrammatic Modelling
	2.3.4 Graph-based Modelling

	2.4 Metamodelling
	2.4.1 Loose Metamodelling
	2.4.2 Strict Metamodelling

	2.5 Meta-Object-Facility
	2.6 Existing Initatives
	2.6.1 The Eclipse Modelling Framework
	2.6.2 Diagram Predicate Framework
	2.6.3 The DPF Workbench

	3 Problem Description And Methodology
	3.1 Three Limitations
	3.1.1 The Role Of A Metamodel
	3.1.2 The Replication Of Concepts Problem
	3.1.3 The Multiple Classification Problem
	3.1.4 The Classifier-Duality Problem

	3.2 Deep Instantiation
	3.2.1 Powertypes
	3.2.2 Potency

	3.3 Linguistic And Ontological Instantiation
	3.4 Existing Initiatives
	3.5 Summary And Research Methodology

	4 Comparison Analysis
	4.1 Expected Outcomes
	4.2 Metadepth
	4.2.1 The Linguistic metamodel
	4.2.2 The User Interface

	4.3 Melanee
	4.3.1 The Linguistic Metamodel
	4.3.2 The User Interface

	4.4 Diagram Predicate Framework
	4.4.1 The DPF Editor
	4.4.2 The DPF Visualization Editor

	4.5 Summary

	5 Design And Implementation
	5.1 Extending DPF - Part One
	5.1.1 Deep Instantiation
	5.1.2 Dual Classification And Linguistic Extension
	5.1.3 Summary

	5.2 Evaluation by Code Generation
	5.2.1 Design And Implementation
	5.2.2 Results And Possible Improvements
	5.2.3 Summary

	5.3 Extending DPF - Part Two
	5.3.1 Model Flattening Semantics
	5.3.2 Mutability
	5.3.3 E-Graphs
	5.3.4 Summary

	5.4 Templates
	5.4.1 Enriched Graph
	5.4.2 Platform Independent Modelling Hierarcies in DPF
	5.4.3 Summary

	5.5 The Concrete Syntax
	5.5.1 The Visual Metamodel
	5.5.2 The Model Mapping
	5.5.3 The Template Visualization Wizard
	5.5.4 Filtering Model Elements In The Palette

	5.6 Current Shortcomings
	5.7 Summary

	6 Demonstration
	6.1 The Abstract Syntax
	6.2 The Concrete Syntax
	6.3 The Default Class Diagram
	6.4 Customizable Concrete Syntax

	7 Conclusion
	7.1 Summary
	7.2 Further Work
	7.2.1 Current Shortcomings
	7.2.2 Additional Features In The Model Editor
	7.2.3 Concrete Syntax Improvements
	7.2.4 Fully Functional Code Generator

	List of Figures
	List of Tables
	Abbreviations
	Bibliography

