
Generalized Sketches and Model-driven Architecture

Adrian Rutle1, Yngve Lamo1 and Uwe Wolter2

1Bergen University College, NORWAY
2Dept. of Informatics, University of Bergen, NORWAY

ABSTRACT
Software developers increasingly recognize the need for portable,
scalable and distributed applications which are reliable, se-
cure and run at high performance. These applications are
also required to be produced both faster and at a lower
cost. An approach to achieve this is the Object Manage-
ment Group’s Model Driven Architecture which involves au-
tomatic development processes and model management in
addition to executable models. This makes the importance
of formal modeling languages more recognizable since the
automatization of processes requires formal models. How-
ever, current modeling languages are either semi-formal, am-
biguous, or both, therefore, a generic framework for for-
mal, diagrammatic software specification is inevitable. In
this presentation, Generalized Sketches will be introduced
as a generic framework for the specification of modeling lan-
guages and transformations between them. Then an exam-
ple will be presented to show how Generalized Sketches may
be used in Model Driven Architecture.

Introduction and Motivation
Evidently, formalization of modeling languages and transfor-
mations between them is an important step in Model Driven
Architecture (MDA) [10]. In contrast to the traditional soft-
ware development processes where models are used only for
documentation purposes, in MDA, models are considered
first-class citizens. In MDA, building applications is started
by the construction of abstract, platform-independent mod-
els (PIM) of system properties and behavior. These models
are automatically transformed into one or more platform-
specific models (PSM) which are used by code-generators to
generate application code [7]. The transformation processes
are specified by transformation definition languages and are
executed by transformation tools. The involvement of these
tools in the development processes requires that the mod-
els and the transformations between them should be defined
formally. This implies the necessity of techniques which can
be used to specify formal models and formal transformation
definitions.

In addition, using formal modeling techniques provides
mechanisms for model de-composition and integration; mech-
anisms for verification of correctness, consistency and va-
lidity of models and transformation definitions; as well as
mechanisms for reasoning about models and transforma-
tions. Thus the basis for executable models will be a step
nearer accomplishment.

Related Work
Currently, the Unified Modeling Language (UML) is the
most used diagrammatic modeling language in software en-
gineering. A huge effort is done by the Object Manage-
ment Group (OMG) to formalize UML. This effort has re-
sulted in special languages such as the Meta Object Fa-
cility (MOF) [8], which can be used to specify all other
OMG languages; and the Queries, Views and Transforma-
tions (QVT) language which is used to specify transforma-
tions between MOF-compliant languages [9]. The QVT’s ap-
proach of transformation requires that modeling languages
are MOF-compliant in order to enable model transforma-
tion and integration. This approach might solve some of the
problems concerning model definition and transformation,
however, it is not the optimal solution for the problem be-
cause of the continuous development of modeling languages
that are not necessarily MOF-compliant. In fact, MOF only
provides the syntax for modeling languages, hence the se-
mantics is still needed to be formalized.

Another language which is used for definition of transfor-
mations is the ATLAS Transformation Language (ATL) [6].
ATL is currently available as an open source project under
the Eclipse Modeling subproject. The ATL framework con-
sists of a transformation language (ATL), a virtual machine,
and an IDE for writing transformation definitions. ATL is
a hybrid language –both declarative and imperative. The
declarative style is used to specify rules for matching source
and target patterns. During application of the rules, a tar-
get pattern will be created in the target model whenever a
source pattern is found. ATL presumes that the source and
target languages are well-formed without providing mecha-
nisms to check the well-formedness of the languages. ATL
defines the semantics of transformation rules, however, this
semantics is not graph-based.

Goals and Approaches
The purpose of our research is to investigate and apply the
potentials of Category Theory (CT) and the ideas which
propose Generalized Sketches (GS) as a mathematical for-
malism for formalization of modeling languages [1, 2, 4] and
their transformations [3]. GS is a graph-based specifica-
tion format which borrows its main ideas from both first or-
der logic and categorical logic [4]. GS provides mechanisms
for specification and manipulation of models in an abstract,
generic and formal way.

In GS, a modeling language L is represented by a meta-
sketch SL which in turn is based on a diagrammatic sig-
nature ΣL. A ΣL-sketch can be seen as an instance of SL,



L−models correspond to visualizations of ΣL−sketches, and
model transformations correspond to sketch operations. ΣL
is a collection of diagrammatic predicate symbols, and, each
predicate symbol corresponds to a constraint or construct
which can be set by L. ΣL−sketches are categorical struc-
tures which consist of nodes, arrows and diagrams which are
marked with predicate labels from ΣL. By having a graph-
based logic in which the arrow-thinking style is provided,
the relationship between the syntax and the semantics of di-
agrams in ΣL−sketches is made formal and more compact.

Heterogenous model transformations can be formalized in

the following way. For the Language L
′
, we can define the

signature ΣL′ and the meta-sketch SL′ . The transformation

between constructs of L and L
′

can now be specified formally
as a sketch operation which is given by a sketch morphism
φ : SL → SL′ (Figure 1). Then a ΣL−sketch, IL, which
is an instance of the meta-sketch SL can be transformed
to a ΣL′−sketch, IL′ , by applying the sketch operation as
shown in the figure and explained in the example below. The
commutativity requirement of the diagram in the figure is to
assure that the transformation is correct. For homogenous
model transformation, we use the same procedure for ΣL =
ΣL′ .

SL
φ // SL′

IL
φ∗

//

ι1

OO

[=]

IL′

ι2

OO

Figure 1: Generic Model Transformation

Example
A simplified meta-sketch, SPIM , of a subset of a PIM lan-
guage is shown in Figure 2. The figure explains the relations
between classes and attributes. In this language, attributes
must have exactly one kind of visibility: public, private or
protected. This constraint is given by the total mapping,
attrV isibility, and the curly braces including the possible
visibility types, {pub, prv, prt}. Associations are omitted
for briefness, and operations are not part of this PIM lan-
guage.

Figure 2: SPIM , the meta-sketch of a PIM language

In Table 1, some constraints (or predicates) from ΣPIM
with their semantics in terms of sets and mappings are shown.
Predicates can be combined to set the necessary constraints,

name arity visualization semantic

”node” • A set

[cover] • // • A −f−I B ∀b ∈ B : ∃a ∈
A | f(a) = b

[total] • // • A • f // B ∀a ∈ A : ∃b ∈
B | f(a) = b

[partial] • // • A ◦ f // B ∃a ∈ A | @b ∈
B | f(a) = b

[multivalued] • // • A f // // B ∀a ∈ A | a ∈
Dom(f) : f(a) ⊆
P(B)

Table 1: Signatures ΣPIM and ΣPSM

e.g. the mapping between Class and Attribute in SPIM is
marked with two predicates: [cover], meaning that all at-
tributes must exist as a field in some class, and [multivalued],
meaning that each class may have 0...* attributes.

Figure 3 shows a simplified meta-sketch, SPSM , of a sub-
set of a PSM language. Operations are part of this PSM
language. There is a semantic overlap between the signa-
tures of the PIM and the PSM languages, therefore, there is
no need for a signature mapping. In most cases, especially
when very different languages are concerned, a signature
mapping is necessary to make the alignment of the two lan-
guages possible. A signature mapping is given by a signature
morphism which is a mapping between predicate labels such
that the shape graphs of the predicate labels are preserved.

Figure 3: SPSM , the meta-sketch of a PSM language

In Figure 4, we show a very simple transformation defini-
tion as it is defined by the GS formalism. This transforma-
tion is often used in the transformation of PIMs to PSMs,
where a low level model –including operations– is generated
from the high level model. For each public attribute attr
from the PIM, we will generate a private attribute and two
public operations –a getter and a setter– to access attr. In
the transformation, we declare that for any match of the
diagram SRC in the source model, the diagram TRG will
be generated in the target model. This transformation can
be specified diagrammatically and, we can put any kind of
formal constraints on the transformation and its source and
target models.

Examples of constraints which must be defined for this
transformation are:

• getterOp; returnType = attr; attrType, stating that
the return type of the getter of each attribute must be



Figure 4: Transformation definition.

the same as the type of the attribute.

• setterOp; param; paramType = attr; attrType, stat-
ing that the type of the parameter of the setter of each
attribute must be the same as the type of the attribute.

• getterOp; op1Name = ”get”+attr; attrName, stating
that the name of the getter of each attribute must be
the same as the name of the attribute prefixed by ”get”.

• setterOp; op2Name = ”set”+attr; attrName, stating
that the name of the setter of each attribute must be
the same as the name of the attribute prefixed by ”set”.

Concluding Remarks
The example shows how a transformation between two mod-
eling languages (which are specified in GS) is defined. That
kind transformation may be achieved also by using ATL or
QVT. However, in GS, this process is both diagrammatic,
allowing us to define the transformation visually; formal, al-
lowing us to compose transformations and verify easily that
the target model is an instance of the target metamodel; as
well as language-independent, the transformation can be ap-
plied to the metamodel of any source language which has an
occurrence of SRC, and any target language in which TRG
can be expressed.

Currently, the focus of our research is on accomplishing
the theories of GS and the design of tools for the application
of these theories. Our tools will be implemented as plugins
to Eclipse and will be proposed as a subproject of the Eclipse
Modeling project [5]. The tools will be intended for three
groups of users.

• Those who are interested in formalization of languages
by designing diagrammatic signatures for those lan-
guages.

• Those who are interested in comparison and alignment
of languages by definition of transformations between
those languages.

• Those who are interested in using the signatures and
transformations to define domain-specific models and
then transform them to models in other modeling or
programming languages, i.e. automatic code-generation.

1. REFERENCES
[1] Zinovy Diskin. Generalized sketches as an algebraic

graph-based framework for semantic modeling and
database design. Technical Report 9701, University of
Latvia, Riga, Latvia, August 1997.

[2] Zinovy Diskin. Practical foundations of business
system specifications, chapter Mathematics of UML:
Making the Odysseys of UML less dramatic, pages
145–178. Kluwer Academic Publishers, 2003.

[3] Zinovy Diskin. Encyclopedia of Database Technologies
and Applications, chapter Mathematics of Generic
Specifications for Model Management I and II, pages
351–366. Information Science Reference, 2005.

[4] Zinovy Diskin and Uwe Wolter. A Diagrammatic
Logic for Object-Oriented Visual Modeling. In
ACCAT 2007: 2nd Workshop on Applied and
Computational Category Theory, volume 203 of
ENTCS, pages 19–41, Amsterdam, The Netherlands,
2008. Elsevier Science Publishers B. V.

[5] Eclipse Modeling Framework. Project Web Site.
http://www.eclipse.org/emf/.

[6] Frédéric Jouault and Ivan Kurtev. On the
architectural alignment of ATL and QVT. In Hisham
Haddad, editor, SAC 2006: 21nd ACM Symposium on
Applied Computing, pages 1188–1195. ACM, 2006.

[7] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA
Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[8] Object Management Group. Meta-Object Facility
Specification, January 2006. http:
//www.omg.org/cgi-bin/doc?formal/2006-01-01.

[9] Object Management Group.
Query/View/Transformation Specification, April 2008.
http:

//www.omg.org/cgi-bin/doc?formal/2008-04-03.

[10] OMG Model Driven Architecture. Web Site.
http://www.omg.org/mda/.


