
Automatic Definition of Model Transformations
at Instance Level

Adrian Rutle1, Alessandro Rossini2, Yngve Lamo1 and Uwe Wolter2
1Faculty of Engineering, Bergen University College, Norway
2Department of Informatics, University of Bergen, Norway

ABSTRACT
A model transformation is the generation of a target model
from a source model. Usually, it is defined for metamodels,
i.e. models at the meta-level, and executed by a transfor-
mation engine to transform instances of those metamodels.
In some cases, it is also desired to transform the instances of
the transformed models. In this paper, we use the Diagram
Predicate Framework to show how model transformations
which are defined at the metamodel level can be used as
guidelines to automatically define model transformations at
the model level. This requires a special relationship between
the metamodel and the instances of its instances in order to
inherit all the properties of the transformations from the
metamodel level. A formalisation of this relationship is out-
lined in this paper.

1. INTRODUCTION AND MOTIVATION
Software models are abstract representations of software

systems. These models are used to tackle the complexity
of present-day software systems by enabling developers to
reason at a higher level of abstraction. In Model-Driven
Engineering (MDE), we refer to four levels of abstraction,
which are summarized in the following modelling hierarchy :

M3

conformsTo

M2

conformsTo

M1

conformsTo

M0

conformsTo

Models at the M0-level are called in-

stances which represent the running sys-
tem. These instances must conform to
models at the M1-level, which are struc-
tures specifying what instances should
look like. These models, in their turn,
must conform to a metamodel at the
M2-level, against which models can be
checked for validity. Metamodels cor-
respond to modelling languages, for ex-
ample the Unified Modeling Language
(UML) and Common Warehouse Model
(CWM). The highest level of abstraction
(as defined by the Object Management
Group [2]) is the M3-level. A model at
this level is often called meta-metamodel ;
it conforms to itself and it is used to describe metamodels.
In MDE models are the primary artefacts of the devel-

opment process. Model transformations play a central role
and have many applications in MDE, such as; model integra-
tion, model refinement, model evolution, multi-modelling,
and code-generation, to mention a few. These transforma-
tions are defined at the metamodel level, and executed at
the model level. For example, when we want to transform
a Java object, we define the transformation for its class. In

the same way, when we want to transform a Java class, we
define the transformation for the meta-type of Java classes,
which is the class Class.

An advantage of using the metamodel level is to enable the
definition of transformations at a higher level of abstraction.
Another advantage is to work with a smaller set of model
elements. This is because metamodels are typically smaller
and more compact than their instances.

The focus of this paper will be on the automatic defi-
nition of transformations at the model level based on the
transformation definition at the metamodel level. This kind
of automatisation is investigated algebraically using pull-
backs [1], however, our approach is more generic and is not
bound to a specific algebraic operation. A requirement for
the automatisation is the existence of a special relationship
between metamodels and the instances of their instances. A
short description of this relationship is given in Section 2.

2. DIAGRAM PREDICATE FRAMEWORK
Diagram Predicate Framework (DPF)1 [3, 4, 5] provides

a formal approach to modelling based on category theory –
the mathematics of graph-based structures. In DPF each
modelling language L corresponds to a diagrammatic signa-
ture ΣL and a metamodel MML. L-models are represented
by ΣL-specifications

2 which consist of a graph and a set
of constraints. The graph represents the structure of the
model, and predicates from ΣL are used to add the con-
straints to the graph [5]. Signatures, constraints and dia-
grammatic specifications are defined as follows:

Definition 1. A (diagrammatic predicate) signature Σ :=
(Π, α) is an abstract structure consisting of a collection of
predicate symbols Π with a mapping that assigns an arity
(graph) α(p) to each predicate symbol p ∈ Π.

Definition 2. A constraint (p, δ) in a graph G(M) is given
by a predicate symbol p and a graph homomorphism δ :
α(p) → G(M), where α(p) is the arity of p.

Definition 3. A Σ-specification M := (G(M),M(Π)), is a
graph G(M) with a set M(Π) of constraints (p, δ) in G(M)
with p ∈ Π.

Fig. 1a shows an example of a Σ-specificationM = (G(M),
M(Π)). G(M) in Fig. 1b is the graph of M without any

1Formerly named Diagrammatic Predicate Logic (DPL).
2For the rest of the paper we use the terms “model” and
“diagrammatic specification” interchangeably.



Figure 1: A Diagrammatic Specification: (a) M =
(G(M),M(Π)), (b) its graph G(M).

constraints on it. In M , every university educates one or

more students; this is forced by the constraint ([total], δ1)
on the arrow educates, which is visualised as a filled circle at
the beginning of the arrow. Moreover, every student stud-
ies at exactly one university; this is forced by the constraint
([single−valued], δ2) on the arrow studies, which is visualised
as the marker [1] at the cap of the arrow.
A signature with details of the semantics of its predicates

is shown in [5]. Here, only an informal definition of the
concept of instances of diagrammatic specifications is given.
An instance (ιM , I) of a diagrammatic specification M is a
graph homomorphism ιM : I → G(M), i.e. the elements
of I are typed by G(M), the graph of M , such that the
constraints in M are satisfied. The set of the instances of a
diagrammatic specification M is denoted Inst(M).
As mentioned, in a modelling hierarchy each model at

Mi-level conforms to a model at Mi+1-level, for 0 ≤ i <

3. In a modelling hierarchy with transitive conformance, if
an instance I at M0-level conforms to a model M at M1-
level, and M in its turn conforms to a metamodel MM

at M2-level, then I also conforms to MM . This property
is formalised in the next definition; its importance for the
automatic definition of model transformations at the model
level based on transformation definition at the metamodel
level is explained in Sec. 3.

Definition 4. In a modelling hierarchy with transitive con-
formance, given any diagrammatic specification MM , for
each (ιMM ,M) ∈ Inst(MM) if (ιM , I) ∈ Inst(M) then
(ιM ; ιMM , I) ∈ Inst(MM).

3. MODEL TRANSFORMATIONS
As an example, suppose we want to generate a relational

database model from a class model. The class model con-
tains a hierarchy of classes with references between them.
The relational database model contains a set of database
tables and relationships between them. We can easily de-
velop a model transformation to transform the elements of
a specific class model to a database model. Alternatively,
we can define a generic transformation which can be used to
transform any class model to a database model. Obviously
the former procedure is less convenient since it implies that
for every class model we have to define a new transforma-
tion. To achieve the latter, we define the transformation for
the metamodels of class models and database models. Then
we use a transformation engine to (automatically) transform
any model that conforms to the metamodel of class models,
to a model which conforms to the metamodel of relational
databases.
Moreover, in some cases, we want also to transform in-

stances of these class models. Thus we have to define a new
model transformation between the models themselves. The

MM
MT−def.

MM ′

Inst(MM)
MT−exec.

MT−engine

Inst(MM ′)

Figure 2: Model transformations: overview.

P

ιP
m

K
in

P ′inP

P ′

ι
P ′

m′

[[r]]

MM MιMM

[=]

M
′

ι
MM′

[=]

MM ′

Figure 3: A transformation rule r : P → P ′.

results of this paper enables us to reuse the model transfor-
mation which was defined at the metamodel level to define
the model transformation at the model level. This is out-
lined in Sec. 3.1. But first, we have to explain some concepts
which are used in model transformations.

Fig. 2 shows the overview of model transformations. Each
model transformation is given by a transformation definition
MT-def which describes how instances of a source model
MM can be transformed to instances of a target model
MM ′. The transformation definition is specified in a trans-
formation language, and is executed by a transformation
engine. That is, given a model transformation definition, a
source model, and a target model, the transformation en-
gine tries to create an instance of the target model for each
instance of the source model.

Every transformation definition consists of a set of trans-
formation rules. Each rule defines which elements of the
source instances are to be transformed to which elements
of the target instances. This is done through an input pat-
tern P and an output pattern P ′, as shown in Fig. 3. Thus
the transformation engine generates a match of the output
pattern in the target instance whenever it finds a match of
the input pattern in the source instance. Details of how
the transformation engine is controlled and how patterns
are coordinated (through the coordination set K) are given
in [4]. Here, patterns and matches of patterns are defined
as follows:

Definition 5. A pattern P over a diagrammatic specifica-
tion MM is an instance (ιP , P ) of MM , where the items in
P are formal parameters or variables.

Definition 6. A match m : P → M of a pattern P in an
instance (ιMM ,M) of a diagrammatic specification MM is
a graph homomorphism m : P → M where variables in P

are assigned values from M , and m; ιMM = ιP .

For a match m : P → M , the analogy is that P is the
formal parameter of m and some part of M is the actual
parameter. That is, a pattern P can be seen as a scheme
and a match m assigns values from M to the variables in P .
We use Match(P ) to denote the set of all matches of P in
Inst(MM), i.e. all matches of P in all instances (ιMM ,M)
of MM . Moreover, we use MatchM (P ) for M ∈ Inst(MM)
to denote the set of all matches of the pattern P in M .

Recall that each transformation definition consists of a set
of transformation rules. These rules and their semantics are
defined as follows:



Definition 7. A transformation rule r is declared by r :
(ιP ,MM) → (ιP ′ ,MM ′) (abbreviated r : P → P ′) where
both P and P ′ are patterns over the models MM and MM ′,
respectively.

Definition 8. The semantics of a transformation rule r :
P → P ′ is a mapping [[r]] which assigns to each match m ∈
Match(P ) a match m′ ∈ Match(P ′), i.e. [[r]] : Match(P ) →
Match(P ′).

3.1 Automatisation of Transformations
An overview of the automatic construction of transfor-

mation rules at the model level is shown in Fig. 4. Based
on the execution of each transformation rule r : P → P ′

at the metamodel level, a (set of) transformation rule(s) r∗

at the model level will be created. These transformation
rules use PM , where M ∈ Inst(MM) and MatchM (P ) 6= ∅,

as input patterns; and PM′

, where M ′ ∈ Inst(MM ′) and

MatchM′

(P ′) 6= ∅, as output patterns. These patterns are
defined as follows:

Definition 9. PM is the set of input patterns such that

∀m(P ) ∈ MatchM (P ) : ∃P ∗ ∈ PM , and PM′

is the set of

input patterns such that ∀m′(P ′) ∈ MatchM′

(P ′) : ∃P ∗
′

∈

PM′

.

The input and output patterns in PM and PM′

are cre-
ated by adding a free variable to the matches of the pat-
terns of r. In Fig. 5, these constructions are abbreviated

as f : M ⇒ PM and g : M ′ ⇒ PM′

. For example, if
a transformation rule r takes the pattern P = x:Class as
input and the pattern P ′ = x:Table as output, then for
the input matches Student:Class3 and University:Class

in the model M , the construction f∗ : MatchM (P ) → PM

will create x1:Student:Class and x2:University:Class as
input patterns P ∗

1 and P ∗

2 for the rules r∗1 and r∗2 , respec-
tively. Similarly, for the output matches Student:Table

and University:Table in the model M ′, the construction

g∗ : MatchM′

(P ′) → PM′

will create x1:Student:Table

and x2:University:Table as output patterns P ∗
′

1 and P ∗
′

2

for r∗1 and r∗2 , respectively.

Definition 10. f∗ : MatchM (P ) → PM is a construction
such that, ∀m(P ) ∈ MatchM (P ), f∗(m(P )) = P ∗ where P ∗

is a pattern over M . g∗ is defined similarly.

Theorem 1. Given a transformation rule r : P → P ′ at
the metamodel level, it is possible to create a set of trans-

formation rules R∗ : PM → PM′

at the model level.

Corollary 1. The semantics of a transformation rule r∗i ∈

R∗ : PM → PM′

is a mapping [[r∗i ]] which assigns to each

match m∗ : P ∗ ∈ PM→ I a match m∗
′

: P ∗
′

∈ PM′

→ I ′,

i.e. [[r∗i ]] : Match(PM ) → Match(PM′

).

In modelling hierarchies with transitive conformance, the
application of automatically generated model transforma-
tions at the M1-level – which are based on model trans-
formations at the M2-level – will generate models at the
M0-level which are instances of the target metamodel. This

3Notice that (Student:Class) is a “user-friendly” notation
for the assignment (ιMM : Student 7→ Class).

MM
MT−def.

MM ′

M

ιMM

MT−exec.

MT−engine

MT−def.

Auto.

M ′

ι
MM′

I

ιM

MT−exec.

MT−engine

I ′

ι
M′

Figure 4: Model transformations: automatisation.

P

ιP
m

K
in

P ′inP

P ′

ι
P ′

m′

[[r]]

MM MιMM

[=]

f

M
′

ι
MM′

[=]

g

MM ′

PM

m∗

PM
′

m∗
′

[[r∗
i
]]

I

ιM

[=]

ιM ;ιMM

I
′

ι
M′

[=]

ι
M′ ;ιMM′

Figure 5: Creation of the transformation rules r∗

based on the transformation rule r.

feature is important in order to inherit the properties of the
model transformations which are defined at a higher level
of abstraction. For example, if a model transformation at
the M2-level is correct, then the automatically constructed
model transformation at the M1-level will also be correct.

4. SUMMARY
Transformation rules which are defined between meta-

models can be used to automatically derive transformation
rules between models. Moreover, if this technique is used
for modelling hierarchies with transitive conformance, the
properties of the model transformations at the M2-level are
preserved in the model transformations at the M1-level.

5. REFERENCES
[1] Z. Diskin and J. Dingel. A metamodel Independent

Framework for Model Transformation. Technical
Report 1/2006, ATEM 2006, Johannes Gutenberg
Universität Mainz, Germany, October 2006.

[2] Object Management Group. Web site.
http://www.omg.org.

[3] A. Rutle, U. Wolter, and Y. Lamo. Diagrammatic
Software Specifications. In NWPT 2006, October 2006.

[4] A. Rutle, U. Wolter, and Y. Lamo. A Diagrammatic
Approach to Model Transformations. In EATIS 2008,
pages 1–8. ACM, 2008.

[5] A. Rutle, U. Wolter, and Y. Lamo. A Formal Approach
to Modeling and Model Transformations in Software
Engineering. Technical Report 48, Turku Centre for
Computer Science, Finland, 2008.


