Constraint-Aware Model Merging

Alessandro Rossini, Uwe Wolter Adrian Rutle, Florian Mantz, Yngve Lamo
University of Bergen Bergen Universiy College
P.O. Box 7803, 5020 Bergen, Norway P.O. Box 7030, 5020 Bergen, Norway
{rossini,wlter}@i.uib.no {aru, fma, yl a} @i b. no

Since the beginning of computer science, raising the atigirelevel of software systems has been a
continuous process. One of the latest steps in this diretié@s led to the usage of modelling languages
in software development processes. Software models ateebsepresentations of software systems
which are used to tackle the complexity of present-day sofviby enabling developers to reason at a
higher level of abstraction. In model-driven engineeriWtipE), models are first-class entities of the soft-
ware development process and undergo a complex evolutidmgdineir life-cycles. As a consequence,
there is a growing need for techniques and tools to suppatemanagement activities such as version
control.

In optimistic version control, each developer has a local copy of a softwatefact. These local
copies are modified independently and in parallel and, fiom to time, local modifications are merged
together. The merge is performed usindpaee-waymerging techniqued], which attempts to merge two
versions of a software artefact relying on the common ancestsion from which both versions origin-
ated. This technique facilitates the detection of confliBisughly speaking, conflicts may arise when the
modifications are contradictory. They are resolved eithanmally or, when applicable, automatically.

Mainstream version control systems, e.d], farget text-based artefacts. Hence, underlying tech-
nigues such as merging, conflict detection and conflict vtienl are based on a per-line textual com-
parison. Since the structure of models is graph-basedrrdiba text-based, these techniques are not
suitable for MDE.

To cope with this problem, a few prototype version contrateyns have been developed that target
graph-based structures, e.g8].[However, a uniform formalisation of model merging, cattfliletection
and conflict resolution in MDE is still debated in the litana. Research has lead to a number of findings
in this field [6]. The interested reader may consult 8, 12, 11, 4] for different approaches to model
merging, conflict detection and conflict resolution. Unfioidtely, these techniques consider only model
elements and their conformance to the constraints of thegeonding modelling language, e.g. well-
formedness constraints. However, these techniques slataddconsider constraints added to model
elements, e.g. multiplicity constraints. An interestifalbenge is then to extend the current techniques
by enabling version control of constraints.

In this work, a formal approach to constraint-aware modelyng is proposed; i.e. a model merging
technique which enables the detection and possibly reésolof semantic conflicten constraints. The
proposed approach is based on the Diagram Predicate Frakn@eF) [9, 7, 10, 8] which provides a
formalisation of (meta)modelling and model transformati@sed on graph theory and category theory.

The word “model” has different meanings in different congéexIn software engineering, model
denotes “an abstraction of a (real or language-based)mnsyallewing predictions or inferences to be
made” b]. Models in software engineering are typically diagramimaihe word “diagram” has also
different meanings in different contexts. In software @egiring, diagram denotes a structure which is
based on graphs; i.e. a collection of nodes together witHlaation of arrows between nodes. Since
graph-based structures can be visualised in a natural wesyal” and “diagrammatic” modelling are
often treated as synonyms. In this work, visualisation dagrdmmatic syntax are clearly distinguished.
That is, the proposed approach focuses on precise syntageamahtics of diagrammatic models inde-
pendent of their visualisation.

In DPF, models are represented (@jagrammatic) specificatian A specification& = (S,C°:

) consists of an underlying graph together with a set citomic constraintsC'® [9, 8]. The graph

Constraint-Aware Model Merging Rossini et al.

Table 1: A sample signatuie
> (p) Proposed vis. | Semantic interpretation

1—=2 [Tfm> Vee X :m<|f(x) <n,
) with0 <m <nandn>1

fX)=Y

D a
[mul t (m,n)]

[surjective]

f
12 | Mgy

[inverse] 1 2 Vee X ,VyeY :ye f(x)iff

regy)

f
9

represents the structure of the model while atomic comggr@dd restrictions to this structure. Atomic
constraints are formulated by predicates fr@ragrammatic predicate) signatse A signatureX =
(P*,a*) consists of a collection of predicates, each having a narsieajpe graph, a visualisation and a
semantic interpretatiord] 8].

The proposed approach to constraint-aware model mergipgesented in the following by means
of a running example. This example is kept intentionally emn retaining only the details which are
relevant for the discussion. Suppose that Alice and Bob arking on the same modg&l, (see Figla).
Alice modifies the models; to 2l; by adding a multiplicity constraint] mul t (0,3)],d;: (1 % 2) —

(X ERN Y’)) on the arrowf (see Figlb). Then, Bob modifies the mod#,; to 2, by adding a surjectivity
constraint([sur j ecti ve],ds3) on the arrowg and an inverse constraitf i nver se] ,d2) on the
arrowsf andg (see Figlc). Finally, Alice tries to merge her own modifications withlis modifications.
Usually, a version control system would naively merge thenges.

However, in the modeB; the arrowd andg are inverse of each other, thus a surjectivity constraint
([surjective],ds) on the arrong entails a totality constraintf mul t (1,00)],41) on the arrow
f [8]. The entailed constrair{{ mul t (1,00)] ,d;) introduced by Bob’s modification and the constraint
([mul t(0,3)],01) added by Alice on the same arrdwvould lead to a conflict (see Fidd). This
is because in the mod&, these multiplicity constraints would overlap on the santrevarf. In fact,
this would not be satisfiable according to the semantic pinétation of the predicaterul t (m,n)] .
A constraint-aware model merging approach should provideraatic resolution of this conflict. This

x [gl)]y
f [0..3] [Surl 9
X Y (d),
]
(b2
f f [1..3]
X Y X tinvi(Y
g [surj] 9
(2), (@)
f [1..] or
rinv](Y
[surj] 9 f [l
(c)B; [inv](Y
[surj] 9
(Hwy

Figure 1: A conflict on multiplicity and surjectivity consints and possible resolutions

Constraint-Aware Model Merging Rossini et al.

is possible by adopting one of the followingsolution patterng3]. The first (conservative) resolu-
tion pattern is to merge the multiplicity constraints to asioaint which is the intersection of the two;
ie. ([mult(1,00)],01)A([mult(0,3)],61)=([rmult(1,3)],41). The second (liberal) resolu-
tion pattern is to merge the multiplicity constraints to astoaint which is the union of the two; i.e.
([mult(1,00)],01)V([mult(0,3)],61)=([rmult(0,00)],01). However, since the surjectivity
constraint([surj ecti ve],ds) on the arrong entails a totality constrair{f nmul t (1,00)] ,6;) onthe
arrow f, we can concludé€[surj ective],ds) A([mul t(0,00)],01) = (([surjective],dos)A
([rmult (1,00)],d01)) A(([surjective],os)A([mult(0,00)],01)) = ([surjective],ds)A
([mul t (1,00)],01). The application of the first and the second resolution patevould lead to
the modelsy’s andyU”,, respectively (see Fide and Fig1f).

In this work, the formal foundation of DPF is extended withogit and reasoning systems which
facilitate constraint-aware model merging. A fully fleddedic will enable developers to reason about
properties of specifications and to detect faults in spetifios such as inconsistencies, contradictions
and unsatisfiability. In this regard, the definition of fusthdeduction rules and logical connectives
between constraints may be considered.

References

[1] Apache SubversiorProject Web Siteht t p: / / subver si on. apache. org/.
[2] P. Brosch, G. Kappel, M. Seidl, K. Wieland, M. Wimmer, Haigl, and P. Langer. Adaptable Model Ver-
sioning in Action. InModellierung 2010volume 161 olLNI, pages 221-236. Gl, 2010.
[3] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managiigdel Conflicts in Distributed Development. In
MoDELS 2008volume 5301 o£. NCS pages 311-325. Springer, 2008.
[4] M. A. A. da Silva, A. Mougenot, X. Blanc, and R. Bendraowwards Automated Inconsistency Handling
in Design Models. I'CAISE 2010volume 6051 of NCS pages 348-362. Springer, 2010.
[5] T.Kihne. Matters of (meta-)modelin@oSyM5(4):369-385, 2006.
[6] T.Mens. A State-of-the-Art Survey on Software Mergih§EE Trans. on Software Engineeri28(5):449—
462, 2002.
[7]1 A. Rossini, A. Rutle, Y. Lamo, and U. Wolter. A Formaligat of the Copy-Modify-Merge Approach to
Version Control in MDE.JLAP, 79(7):636—658, 2010.
[8] A. Rutle. Diagram Predicate Framework: A Formal Approach to MDEhD thesis, Department of Inform-
atics, University of Bergen, Norway, 2010.
[9] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. A DiagramntaFormalisation of MOF-Based Modelling
Languages. IMOOLS 2009volume 33 ofLNBIP, pages 37-56. Springer, 2009.
[10] A.Rutle, A. Rossini, Y. Lamo, and U. Wolter. A Formaliga of Constraint-Aware Model Transformations.
In FASE 2010volume 6013 of NCS pages 13-28. Springer, 2010.
[11] G. Taentzer, C. Ermel, P. Langer, and M. Wimmer. ConBietection for Model Versioning Based on Graph
Modifications. INICGT 201Q volume 6372 o£ NCS pages 171-186. Springer, 2010.
[12] B. Westfechtel. A Formal Approach to Three-Way MergafdEMF Models. INWMCP 1010Qpages 31-41.
ACM, 2010.

http://subversion.apache.org/

