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Since the beginning of computer science, raising the abstraction level of software systems has been a
continuous process. One of the latest steps in this direction has led to the usage of modelling languages
in software development processes. Software models are abstract representations of software systems
which are used to tackle the complexity of present-day software by enabling developers to reason at a
higher level of abstraction. In model-driven engineering (MDE), models are first-class entities of the soft-
ware development process and undergo a complex evolution during their life-cycles. As a consequence,
there is a growing need for techniques and tools to support model management activities such as version
control.

In optimistic version control, each developer has a local copy of a software artefact. These local
copies are modified independently and in parallel and, from time to time, local modifications are merged
together. The merge is performed using athree-waymerging technique [6], which attempts to merge two
versions of a software artefact relying on the common ancestor version from which both versions origin-
ated. This technique facilitates the detection of conflicts. Roughly speaking, conflicts may arise when the
modifications are contradictory. They are resolved either manually or, when applicable, automatically.

Mainstream version control systems, e.g. [1], target text-based artefacts. Hence, underlying tech-
niques such as merging, conflict detection and conflict resolution are based on a per-line textual com-
parison. Since the structure of models is graph-based rather than text-based, these techniques are not
suitable for MDE.

To cope with this problem, a few prototype version control systems have been developed that target
graph-based structures, e.g. [2]. However, a uniform formalisation of model merging, conflict detection
and conflict resolution in MDE is still debated in the literature. Research has lead to a number of findings
in this field [6]. The interested reader may consult [7, 3, 12, 11, 4] for different approaches to model
merging, conflict detection and conflict resolution. Unfortunately, these techniques consider only model
elements and their conformance to the constraints of the corresponding modelling language, e.g. well-
formedness constraints. However, these techniques shouldalso consider constraints added to model
elements, e.g. multiplicity constraints. An interesting challenge is then to extend the current techniques
by enabling version control of constraints.

In this work, a formal approach to constraint-aware model merging is proposed; i.e. a model merging
technique which enables the detection and possibly resolution of semantic conflictson constraints. The
proposed approach is based on the Diagram Predicate Framework (DPF) [9, 7, 10, 8] which provides a
formalisation of (meta)modelling and model transformation based on graph theory and category theory.

The word “model” has different meanings in different contexts. In software engineering, model
denotes “an abstraction of a (real or language-based) system allowing predictions or inferences to be
made” [5]. Models in software engineering are typically diagrammatic. The word “diagram” has also
different meanings in different contexts. In software engineering, diagram denotes a structure which is
based on graphs; i.e. a collection of nodes together with a collection of arrows between nodes. Since
graph-based structures can be visualised in a natural way, “visual” and “diagrammatic” modelling are
often treated as synonyms. In this work, visualisation and diagrammatic syntax are clearly distinguished.
That is, the proposed approach focuses on precise syntax andsemantics of diagrammatic models inde-
pendent of their visualisation.

In DPF, models are represented by(diagrammatic) specifications. A specificationS = (S,CS :
Σ) consists of an underlying graphS together with a set ofatomic constraintsCS [9, 8]. The graph
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Table 1: A sample signatureΣ
p αΣ(p) Proposed vis. Semantic interpretation

[mult(m,n)] 1
a

2 X
f

[m..n]
Y ∀x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n andn ≥ 1

[surjective] 1
a

2 X
f

[surj]
Y f(X) = Y

[inverse] 1

a

2

b

X

f

Y

g

[inv] ∀x ∈ X , ∀y ∈ Y : y ∈ f(x) iff
x ∈ g(y)

represents the structure of the model while atomic constraints add restrictions to this structure. Atomic
constraints are formulated by predicates from(diagrammatic predicate) signatures. A signatureΣ =
(P Σ ,αΣ) consists of a collection of predicates, each having a name, ashape graph, a visualisation and a
semantic interpretation [9, 8].

The proposed approach to constraint-aware model merging ispresented in the following by means
of a running example. This example is kept intentionally simple, retaining only the details which are
relevant for the discussion. Suppose that Alice and Bob are working on the same modelV1 (see Fig.1a).
Alice modifies the modelV1 to A1 by adding a multiplicity constraint([mult(0,3)],δ1 : (1

a
−→ 2) →

(X
f
−→ Y )) on the arrowf (see Fig.1b). Then, Bob modifies the modelV1 toB1 by adding a surjectivity

constraint([surjective],δ3) on the arrowg and an inverse constraint([inverse],δ2) on the
arrowsf andg (see Fig.1c). Finally, Alice tries to merge her own modifications with Bob’s modifications.
Usually, a version control system would naively merge the changes.

However, in the modelB1 the arrowsf andg are inverse of each other, thus a surjectivity constraint
([surjective],δ3) on the arrowg entails a totality constraint([mult(1,∞)],δ1) on the arrow
f [8]. The entailed constraint([mult(1,∞)],δ1) introduced by Bob’s modification and the constraint
([mult(0,3)],δ1) added by Alice on the same arrowf would lead to a conflict (see Fig.1d). This
is because in the modelV2 these multiplicity constraints would overlap on the same arrow f. In fact,
this would not be satisfiable according to the semantic interpretation of the predicate[mult(m,n)].
A constraint-aware model merging approach should provide automatic resolution of this conflict. This

or
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Figure 1: A conflict on multiplicity and surjectivity constraints and possible resolutions
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is possible by adopting one of the followingresolution patterns[3]. The first (conservative) resolu-
tion pattern is to merge the multiplicity constraints to a constraint which is the intersection of the two;
i.e. ([mult(1,∞)],δ1) ∧ ([mult(0,3)],δ1) ≡ ([mult(1,3)],δ1). The second (liberal) resolu-
tion pattern is to merge the multiplicity constraints to a constraint which is the union of the two; i.e.
([mult(1,∞)],δ1) ∨ ([mult(0,3)],δ1) ≡ ([mult(0,∞)],δ1). However, since the surjectivity
constraint([surjective],δ3) on the arrowg entails a totality constraint([mult(1,∞)],δ1) on the
arrow f, we can conclude([surjective],δ3) ∧ ([mult(0,∞)],δ1) ≡ (([surjective],δ3) ∧
([mult(1,∞)],δ1)) ∧ (([surjective],δ3) ∧ ([mult(0,∞)],δ1)) ≡ ([surjective],δ3) ∧
([mult(1,∞)],δ1). The application of the first and the second resolution patterns would lead to
the modelsV′

2 andV′′

2, respectively (see Fig.1e and Fig.1f).
In this work, the formal foundation of DPF is extended with a logic and reasoning systems which

facilitate constraint-aware model merging. A fully fledgedlogic will enable developers to reason about
properties of specifications and to detect faults in specifications such as inconsistencies, contradictions
and unsatisfiability. In this regard, the definition of further deduction rules and logical connectives
between constraints may be considered.
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