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Model-driven engineering (MDE) is a branch of software engineering which aims at improving pro-
ductivity, quality, and cost-effectiveness of software development by shifting the paradigm from code-
centric to model-centric activities. MDE promotes models and modelling languages as the main artefacts
of the development process and model transformation as the primary technique to generate (parts of)
software systems out of models. Models enable developers toreason at a higher level of abstraction,
while model transformation restrains developers from repetitive and error-prone tasks such as coding.
Although techniques and tools for MDE have advanced considerably during the last decade, several
concepts and standards in MDE are still defined semi-formally, which may not guarantee the degree of
precision required by MDE.

Models can be specified using general-purpose languages like the Unified Modeling Language
(UML) [ 8], but to fully unfold the potential of MDE, models are often specified using domain-specific
languages (DSLs) which are tailored to a specific domain of concern. One way to define DSLs in MDE is
by specifying metamodels, which are models that describe the concepts and define the syntax of a DSL.
A model is said toconform toa metamodel if each element in the model is typed by an elementin the
metamodel and, in addition, satisfies all constraints of themetamodel.

Models and metamodels undergo complex evolutions during their life cycles. As a consequence,
when a metamodel is modified, models conforming to this metamodel need to be migrated in such a way
that they conform to the modified version (see Fig.1). In the literature, this problem is referred to as
metamodel evolution [7] or model co-evolution [4].
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Figure 1: Model co-evolution: Metamodel evolution and model migration

To address this problem, a few prototype tools have been developed that support metamodel evolu-
tion in different scenarios, e.g., [7, 9]. However, a uniform formalisation of metamodel evolutionis still
lacking. The relation between metamodel- and model changesshould be formalised in order to allow
reasoning about the correctness of migration definitions. In addition, constraints in models and metamod-
els should also be handled during migration. This work proposes a formal approach to metamodel
evolution which addresses some of these challenges. The approach is based on the Diagram Predicate
Framework (DPF) [2], a formal diagrammatic specification framework founded oncategory theory [1]
and graph transformation [5]. DPF provides the means to specify models with diagrammatic constraints
and defines a conformance relation between models and metamodels which takes into account these
constraints [10].
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In DPF, a model is represented by aspecificationS. A specificationS = (S,CS : Σ) consists of
anunderlying graphS together with a set ofatomic constraintsCS which are specified by means of a
signatureΣ. A signatureΣ = (ΠΣ ,αΣ) consists of a set ofpredicatesπ ∈ ΠΣ , each having an arity (or
shape graph)αΣ(π), a semantic interpretation, and a proposed visualisation.An atomic constraint(π,δ)
consists of a predicateπ ∈ ΠΣ together with a graph homomorphismδ : αΣ(π)→ S from the arity of
the predicate to the underlying graph of the specification.

The semantics of nodes and arrows of a specification has to be chosen in a way which is appropriate
for the corresponding modelling environment [11]. In object-oriented structural modelling, it is appropri-

ate to interpret nodes as sets and arrowsX f
−→ Y as multi-valued functionsf : X→ ℘(Y ). The semantics

of a specification is defined in the fibred way [12]; i.e., the semantics of a specificationS = (S,CS :Σ)
is given by the set of its instances(I, ι). An instance(I, ι) of a specificationS consists of a graphI
together with a graph homomorphismι : I→ S which satisfies the set of atomic constraintsCS .

Metamodel- and model changes can be formalised in DPF as specification transformation rules,
which can be regarded as an extension of graph transformation rules [5]. In this work, possible metamodel
changes are restricted to a specific set of metamodel evolution/migration rules. The migration rules are
derived from metamodel evolution rules by retyping them on the model level; i.e., an isomorphic migra-
tion rule is derived from a metamodel evolution rule by replacing each metamodel element by its instance
element. This rule is matched as often as possible on a model.This approach can be considered as a
special kind of amalgamated graph transformation rule [3] with an empty kernel rule.
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Figure 2: Relations of metamodel- and model changes

Figure2 shows the graph homomorphisms between a metamodel evolution rule and a model migra-
tion rule. These rules are formulated using the cospan double pushout (Cospan DPO) approach [6], which
first extends a graph and then reduces it. Equivalence to the original DPO approach is shown by Ehrig
et al. in [6]. This approach has been chosen since it allows the models tobe adapted in-place. Firstly, a
metamodel is extended by the pushout over the spanM2←LM2→ IM2 (PO1). Afterwards, a conform-
ing model is extended by PO2 over the spanM1← LM1→ IM1 and then reduced by PO3 over the span
IM1←RM1→M1′. Finally, the metamodel is reduced by PO4 over the spanIM2←RM2→M2′. The
application sequence of these pushouts allow that models stay type conform during the entire migration
process.

Figure3 shows the graph homomorphisms between a metamodel evolution rule and a model migra-
tion rule in more detail. The metamodel evolution rule is represented by the cospanLM2→IM2←RM2,
whereas copies of the derived isomorphic migration rule arerepresented by the family of cospans
Li → Ii ← Ri with 1 ≤ i ≤ n. The applicable model migration rule is represented by the cospan
LM1 → IM1 ← RM1, which is constructed by the disjoint union. The disjoint union can be charac-
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Figure 3: Amalgamated migration rule

terised as coproduct in a corresponding rule category. Thatfact that the disjoint union is also typed over
the metamodel evolution rule can be shown by the universal property of coproducts.

This migration rule deduction strategy is only useful for a subset of metamodel evolution rules.
Therefore, the metamodel evolution rules are extended by DPF’s atomic constraints. These atomic con-
straints restrict the possible application of metamodel evolution rules to those cases where the deduction
strategy is sufficient. For example, a multiplicity constraint [1..*] added to an arrow of the LHS graph of
the metamodel evolution rule prevents this arrow from matching with a metamodel arrow having mul-

tiplicity constraint[0..*]. Currently, each arrowX f
−→ Y in the metamodel evolution rule is required to

be total and surjective, i.e.,|f(x)| ≥ 1 and∀y ∈ Y , ∃x ∈ X : y ∈ f(x). Furthermore, LHS and RHS
graphs of metamodel evolution rules with loops and nodes being targets of more than one arrow are not
considered for the automatic deduction of migration rules yet.
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