
Metamodel based Code Generation
in DPF Editor

Anders Sandven

Master’s Thesis in Informatics – Program Development

Department of Informatics
University of Bergen

Department of Computer Engineering
Bergen University College

March 2012

Contents

List of Figures iii

Preface v

1 Introduction 1

1.1 Motivation . 1

1.2 Structure of Thesis . 2

2 Model-based Development 4

2.1 Model-driven Engineering . 4

2.2 Metamodelling . 9

2.3 Constraints . 11

2.4 Language Workbenches . 11

2.5 Existing Language Workbench Solutions 14

2.6 Diagram Predicate Framework 22

2.7 DPF Editor . 23

2.8 Comparison . 25

3 Code Generation 27

3.1 What is Code Generation? . 27

3.2 Why use Code Generation? . 28

3.3 Creating a Code Generator . 29

3.4 Editing Generated Code . 30

3.5 Metamodels and Code Generation 31

3.6 Framework Analysis . 32

3.7 Xpand . 36

i

4 Design and Development 43

4.1 Development Process . 43

4.2 Project Overview . 44

4.3 Problem Description . 45

4.4 Metamodels in Xpand . 46

4.5 DPF Xpand Metamodel . 49

4.6 Integration with Eclipse . 59

4.7 Shortcomings in the Tool . 62

4.8 Feature Overview . 63

5 Demonstrating the Tool 65

5.1 Components/Packages . 65

5.2 Choosing a Framework . 65

5.3 Problem Description . 67

5.4 Creating the Generator . 67

5.5 Creating a Play Project . 82

6 Conclusion 87

6.1 Summary . 87

6.2 Further Work . 88

6.3 Final Words . 92

Bibliography 93

ii

List of Figures

2.1 Domain Specific Language concept 6

2.2 Domain Specific Modelling Language tool 8

2.3 UML metamodel example . 9

2.4 MOF hierarchy . 10

2.5 Language workbench workflow 12

2.6 Language workbench . 13

2.7 Ecore and MOF . 15

2.8 Creating an Ecore file . 15

2.9 Creating an Ecore file diagramatically 16

2.10Creating graphs in Obeo Designer 17

2.11Creating templates using Acceleo 17

2.12MetaEdit+ metamodel editor . 19

2.13MetaEdit+ symbol editor . 20

2.14MetaEdit+ instance model editor 21

2.15MetaEdit+ template editor . 21

2.16DPF Editor . 24

2.17DPF DSML example . 25

3.1 Template engine . 33

3.2 Workflow in Xpand . 40

4.1 Xpand metamodels . 47

4.2 Model-to-model tranformation from DPF to EMF 50

4.3 View of the structure of the metamodel 51

4.4 Mapping from DPF types to DPF Xpand metamodel types 52

4.5 DPF Xpand types . 54

iii

iv

4.6 NodeType UML . 55

4.7 Workflow using the DPF Xpand Metamodel 56

4.8 MetamodelContributor flow chart 60

5.1 DSML for dpfplay . 68

5.2 Sample instance model for dpfplay 70

5.3 Eclipse wizard . 71

5.4 DPF Generator wizard . 71

5.5 CRUD interface for Play . 86

5.6 CRUD interface for Play 2 . 86

Preface

Foreword

This is submitted as my master’s thesis in the Master’s Degree programme
in Informatics – Program Development, at the University of Bergen and
Bergen University College.

Through the work on this thesis I have had the opportunity to learn some-
thing completely new. The first years as an IT student introduced me to soft-
ware modelling with UML; class, activity, sequence, and use case diagrams
presented as a single language. It was confusing and hard to see the real
use for these diagrams beyond serving as documentation.

The introduction of model-driven engineering introduced me to software
modelling in a way that one easily can understand the practical applica-
tions. Creating languages fitted for specific domains was an idea that really
sparked an interest in me. To me, it is a whole new way of thinking pro-
gramming.

The DPF project has introduced me to a lot of skilled and interesting
people who really cares about what they do. Working with people like this
makes it a lot more fun and interesting for myself, as one always have some-
one to discuss a problem with.

Acknowledgements

This thesis has been conducted by myself, but it would not be possible with-
out the help of several people. The feedback and support from my supervi-
sor Yngve Lamo has been invaluable. A special thanks goes to Florian Mantz
for providing feedback and help on the technical side of things. I would also
like to thank Adrian Rutle who (together with Florian) helped me figuring
out the direction of my project. Øyvind Bech has also deserved a big thank
you for always being helpful and providing me with LATEX sources for this
thesis. I would like to thank the rest of the DPF project: Suneetha Sekhar,
Xiaoliang Wang, and Alessandro Rossini.

v

vi

Lastly, I want to thank my parents and my good friend and cousin, Håkon
Botnen, who has helped me proofreading this thesis.

Bergen, 23 March 2012

Chapter 1

Introduction

1.1 Motivation

Modelling languages has been used since the 1960’s when the Entity-Relationship
(ER) model was conceived [7]. Around the same time, the programming
language Simula [10] was launched as the first object-oriented language
which triggered the interest in object-oriented design and analysis. In the
1980’s CASE tools were the next big thing, and was by some predicted to
completely replace textual programming. The use of these tools never re-
ally took off, but we see the legacy of these tools today through software
such as intergrated development environments (IDE). With the adoption
of UML [40] 1.1 in 1997 as a standard by the Object Management Group
(OMG) [37], there was an increased interest in modelling.

Model-driven engineering (MDE) is influenced by lessons learned from
previous efforts. What modelling languages and CASE tools tried to achieve
in the 80-90’s was systems based entirely on models, which would generate
runnable code. This is a difficult task, and is probably even harder today
due to the increased complexity in software. MDE addresses this complexity
with raising the level of abstraction.

The primary artefact in MDE is models. These models can be graphical
and textual, but they serve the same purpose; creating an abstraction of
the system which can be standardized and easily communicated with non-
programmers. The MDE field has in the recent years gained new popularity,
with ideas like domain-specific languages (DSL), domain-specific modelling
languages (DSML) and meta-modelling as important concepts. MDE en-
courages a narrow and clearly defined problem domain which can be ex-
pressed with concise and expressive languages based on models.

When using a diagrammatic approach to MDE, one create models which
usually has no meaning to a computer (semantics). To address this issue, we
need a transformation engine or generator that can help us transform our
model into something usable that the computer understands. A common so-

1

CHAPTER 1. INTRODUCTION 2

lution to this problem is model-to-text transformation; generating code to a
target language, which in its turn is interpreted, or compiled and executed.

This thesis will focus on facilitating model-to-text transformations in DPF
Editor, the reference implementation of Diagram Predicate Framework (DPF).
DPF is a formal diagrammatic approach to MDE. DPF Editor has at this point
roughly implemented the metamodelling aspects of DPF, but lacks any form
of model transformation support. To tackle this problem, one needs a gen-
eral approach which can be used to facilitate code generation for all the
languages created, not a specific solution targeting one DSML. This thesis
will try to answer the research question: is it possible to create a general
code generation facility for modelling languages specified in DPF? Through
the thesis there will be introduced a general solution for creating code gen-
erators in the DPF Editor based on the Xpand framework [54]. In the end
the tool will be demonstrated with the building of a code generator for web
applications, based on the Play Framework [45].

1.2 Structure of Thesis

The thesis is structured in the following way:

Chapter 2 – Model-based Development
This chapter gives an introduction to Model-driven Engineering, Domain-
specific languages, Diagram Predicate Framework and more. We will
investigate the concept of language workbenches and take a look at
some of the existing model-based solutions which we find on the mar-
ket today. We will finish up with a presentation of the DPF Editor, and
compare it with the reviewed tools.

Chapter 3 – Code Generation
We will introduce code generation as a general activity, and look at
why it is interesting. The problem which this thesis tries to solve will
be presented. At the end we will compare different code generation
solutions and introduce the chosen framework.

Chapter 4 – Design and Development
As the chapter title suggests, this chapter will describe the develop-
ment of the code generation tool. We will take a closer look at how
the chosen code generation framework works on the inside, and how
this applies to our solution. In the end of the chapter there will be an
overview covering what has been achieved, as well as the shortcom-
ings of the tool.

Chapter 5 – Demonstrating the Tool
This chapter will demonstrate the tool with the creation of Java code
from a simple model. We will investigate the developed tool’s features
as well as the framework it is based on.

CHAPTER 1. INTRODUCTION 3

Chapter 6 – Conclusion
We will conclude the thesis with a summary of what the developed
solution is capable of. At the very end there is suggestions for fur-
ther work, both in the direction of code generation and as a language
workbench.

Chapter 2

Model-based Development

This chapter will give an introduction to some of the terms and ideas sur-
rounding MDE. We will give an introduction to the concept of language
workbenches and demonstrate a few of the leading products on the market
today. In the end we show what features the DPF Editor has to offer, and
perform a comparison between all the products.

2.1 Model-driven Engineering

In the last decades we have seen a dramatic increase in software complexity.
This complexity has been handled by more expressive and improved general
programming languages, but has failed to keep up with the vast increase in
functionality. The consequence of this is that developers are struggling to
learn to new platforms, and often only learning a subset of what it has to
offer. Another problem is that the developer misses the big picture, and
forgets system-wide issues such as performance. MDE can help fight these
issues with a higher level of abstraction. This abstraction yields advantages
such as increased productivity, code quality/consistency and improved com-
munication with domain experts, as well as programmers [47][21].

Model-driven engineering is a model-centric approach to software devel-
opment, using models as first-class entities. This is in contrast to the classic
code-centric approach, where models sometimes are used for describing
design and is implemented by code, or the code is the design and the imple-
mentation (agile principle). The MDE process defines models which capture
the concepts of certain parts in a computer system and some kind of trans-
formation which makes it understandable by a computer. The models need
to have a narrow focus on the problem domain to reach its full potential. If
the models are too general, it will become very hard to create an expressive
model transformation.

Models can be categorized as prescriptive or descriptive. A prescriptive
model gives a description of the system before it is produced and works

4

CHAPTER 2. MODEL-BASED DEVELOPMENT 5

as a blueprint, while a descriptive model works as documentation for the
system that is created [22]. In MDE, models act as both descriptive and
prescriptive in the sense that the model is a replacement for the traditional
code, and it also acts as a guide for understanding the system at a higher
level.

2.1.1 Domain-Specific (Modelling) Languages

Domain-Specific Languages

There are different ways to create a model in MDE, but in common is the
need for a language in which you can specify models. A popular approach,
which is often not regarded as MDE, is the creation of textual domain-
specific languages (DSL). These languages have the trait of focusing on
a particular domain, where their source files acts as the model. DSLs has
been used for a number of years, and are used in everything from software
build tools (e.g. Ant [2]) to HTML and SQL. Fowler [21] defines a few key
elements for a DSL:

Programming language: A DSL is not a general programming language,
but it shares a lot of properties; it should be formal to be understood
by a computer, but also be intuitive for a human being.

Language nature: A DSL should not consist of separate expressions, but
have a syntax that can be composed by several expressions put to-
gether.

Language expressiveness/focus: The language should only support the
absolute minium of features needed for a limited part of a system. The
expressiveness of a good DSL comes from a clear focus on a limited
domain.

A DSL usually consists of a grammar (that defines the language), a
parser (which conforms to the grammar) and a semantic model. Fowler
defines the semantic model as "the model that is populated by a DSL", i.e.
one directly populate a framework or API.

CHAPTER 2. MODEL-BASED DEVELOPMENT 6

Semantic Model
Parse M2T

Target Code

Optional

DSL Script

Figure 2.1: Figure shows how a DSL works.

Figure 2.1 shows how a typical DSL works. Usually a DSL script is
parsed and used to populate a semantic model which defines the semantics
behind the script. As shown, model-to-text transformations are an optional
part of DSLs. This is because DSLs are often used to allievate the configura-
tion of a piece of software, and can be regarded as a thin wrapper around an
API. Such DSLs are not necessarily focused on raising the level of abstrac-
tion, but rather to create a more convenient syntax for an API. In a MDE
context, we want to raise the level of abstraction and provide the concrete
semantics through model transformations.

Fowler [21] lists four main types of domain-specific languages:

Internal DSLs Internal DSLs are languages which are created within the
host programming language. The host language is formed in a way
that create a fluent syntax.

builder
.specification()
.graph("m1")
.node("DomainClass")
.node("Type")
.arrow("Attribute", "DomainClass", "Type")
.arrow("Reference", "DomainClass", "DomainClass")

.endgraph()

.specification()
.typeGraph("m1")
.graph("instance")
.node("Post", "DomainClass")
.node("User", "DomainClass")

.endgraph()

Listing 2.1: Simple internal DSL for creating specifications in DPF

Listing 2.1 shows a simple internal DSL created in Java for populating
a DPF model. This particular example uses method chaining, a tech-
nique where a method (e.g. node()) returns its class instance when
called.

CHAPTER 2. MODEL-BASED DEVELOPMENT 7

External DSLs External DSLs are the most common DSLs. These lan-
guages use external DSL scripts which are not bound be the host
language’s syntax and thus have a lot more syntactic freedom. Text
files are parsed and used to either populate a semantic model, or do
a model transformation (see figure 2.1). Examples of such languages
are SQL, HTML, XAML, Make etc.

mm:=TGraph<DPF>{
z:Node-e0:Arrow->b:Node,
a:Node-e1:Arrow->b:Node-e2:Arrow->c:Node-t:*->String,

}

m:=TGraph<mm>{
b:c-y@1:t->["Hallo"],
b:c-y@2:t->["Test"],
f:a-l:e1->o:b,

}

ecore(mm)

Listing 2.2: External DSL for creating specifications in DPF

Listing 2.2 shows an external DSL for defining DPF specifications1.
This example shows model m being typed by a metamodel mm, and then
serializing the model. DPF is explained in section 2.6.

Fragmentary DSLs These are DSLs which are embedded in the host pro-
gramming language, such as regular expressions.

Language workbenches Discussed in section 2.4.

Domain-Specific Modelling Languages

DSMLs serve the same purpose as a DSL, but is usually presented in a
visual manner. These languages are specified according to a metamodel,
sometimes defined as a "model of models" [47]. The DSMLs are usually
defined by domain experts and experienced developers to ensure that the
domain concepts are properly described. The languages are then used by
other developers as a programming tool. These languages are dependent
on surrounding functionality and tooling, e.g. graphical editors, code gen-
erators and model validation. Workflow and tooling are further discussed in
section 2.4, Language Workbenches.

The main difference between DSLs and DSMLs are the inner workings
of the modelling environment. Both DSLs and DSMLs needs a parser which
can translate the source file to an internal representation. The DSL’s parser
usually produce an abstract syntax tree or it populates a semantic model.

Figure 2.2 shows how the equivalent of the DSL script is the internal
representation in a DSML-tool. The internal representation of the model is

1The textual DPF tool is part of Florian Mantz’ Ph.D. work.

CHAPTER 2. MODEL-BASED DEVELOPMENT 8

Internal
Representation

Parse

M2T Target Code

Persisted Model

Store

Figure 2.2: An abstract view of a Domain Specific Modelling Language tool.

the model; the persisted model are only a means for the computer to un-
derstand the model. The model-to-text transformation (M2T) is not marked
as optional as in figure 2.1, because DSMLs require some kind of model
transformation to have any meaning to a computer.

The DSML is dependent on tooling, e.g. a visual editor which has an in-
ternal representation of the model. Usually this model also has an external
representation in the form of a file. A popular format for this is the XML
Metadata Interchange (XMI), a XML-based format that is tailored for rep-
resenting models. Furthermore DSMLs are purely a MDE concept, and are
rarely used to populate semantic models. Model transformations with DSLs
and DSMLs are discussed further in chapter 3.

2.1.2 Model-driven Architecture

Model-driven Architechture is the Object Management Group’s (OMG) [42]
model-driven development initiative and can be regarded as a predecessor
to MDE. It was launched as a standard in 2001. Even though the concepts
of domain-specific modelling was known, OMGs MDA created new interest
in the subject. Its core principle is to abstract away technology details of a
specified system with the use of platform-independent models (PIM). PIMs
contain business functionality and behaviour, and are reusable across any
operating system/architecture. Before generating any code from a MDA
project to a target environment, a platform-specific model (PSM) is created
through model-to-model transformations. A PSM is generated for each tar-
get environment.

“The primary goals of MDA is portability, interopability and reusabil-
ity through architectural separation of concern. [42]”

CHAPTER 2. MODEL-BASED DEVELOPMENT 9

MDA meets a lot of critique for different reasons. MDA uses model-to-model
transformations to generate more detailed models as you go, i.e. from a PIM
to a PSM resulting in the need to maintain more models than necessary.
Another problem arise when you edit the PSM; how is this reflected in the
PIM?

The MDA spec is centered around OMG’s own standards. The modelling
language used is very often UML, but it can be any Meta-Object Facility
(MOF) compliant modelling language. MOF is a closed metamodel hierar-
chy with four levels (see more in next section).

2.2 Metamodelling

Metamodelling is an important concept in MDE, yet its definition is highly
debated [47] [46]. A metamodel is sometimes referred to as a "model of
models"; Cook and Kent [8] claims this is a bad definition and should rather
be “a model of the concepts expressed by a modelling language”. A suitable
definition could also be “a model of a modelling language”.

Class Association

Person Carcar

«instance»

Metamodel

Model

«instance»
«instance»

Figure 2.3: A simple metamodel/model example.

Figure 2.3 shows a simple metamodelling example where each of the
modelling constructs is an instance of a concept from the metalevel. A
metamodel specifies the abstract syntax of a modelling language. This syn-
tax defines the concepts, attributes, their relationships and how they fit
together to create a valid model [47]. A model’s available features is de-
fined by what features its metamodel defines. Metamodels has their own
meta-metamodel which define the syntax they must adhere to as well. The
metalayer on top of the hierarchy is usually defined by a reflexive modelling
language, a language which is defined in itself.

CHAPTER 2. MODEL-BASED DEVELOPMENT 10

In 1997 OMG adopted MOF 1.1 as a standard, around the same time
as UML 1.1 was adopted. The goal of MOF is to create a common way of
describing model metadata (data about models). This is done through a
number of specifications such as MOF Core, MOF IDL Mapping, MOF XMI
Mapping, MOF Model to text (MOFM2T) among others.

Modelling
Language Metamodel

Model

specified by

corresponds to

conforms to

Metamodelling
Language Meta-metamodel

specified by

corresponds to

conforms to

conforms to
specified by

Original

represented by

M3
MOF 2.0

M2
UML 2.0

M1
Developer's Model

M0
System Under Study

Figure 2.4: Figure shows the four layer hierarchy defined in MOF.

MOF defines a metamodel hierarchy with four layers (M3 to M0) where
each level conforms to the level above it. MOF’s goal is to create a "gram-
mar" for how the models should be formed. MOF has two variants; Com-
plete MOF (CMOF) and Essential MOF (EMOF). EMOF contains only the
most basic constructs, which in broad strokes is classes, relations, types,
packages and operations. Even though an EMOF compliant modelling lan-
guage is enough for a lot of use cases, the language is fixed and thus falls
short compared to the expressiveness of a DSML created without an EMOF
compliant modelling language.

Figure 2.4 shows that the M3 level, the meta-metamodel, is defined in
itself (reflexive layer). This is done through constructs which the MOF spec-
ification provides. This layer is the metamodel for the UML language. The
M2 level is the instance of M3, and is the model which implements UML,
adhering to the abstract syntax of the layer above. The M1 layer is where
UML concepts such as Class, Atttribute and Operations are used to create a
comprehensible model of the system which is then instantiated by level M0,
the system under study (SUS). M0 contains the original, real world object,
e.g. "Ford" would be instance of a M1 class Car.

MOF is often under criticism in the literature for beeing, rigid because
of a fixed number of metalevels (MOF is sometimes referred to as the four-
layered hierarchy). This criticism is somewhat incorrect as the MOF speci-
fication does not restrict the number of layers [40].

CHAPTER 2. MODEL-BASED DEVELOPMENT 11

2.3 Constraints

A constraint helps us to specify complex requirements beyond what basic
modelling constructs can offer. In UML we have the option to apply con-
straints to our models. Unfortunately only simple constraints like multiplic-
ity and uniqueness can be applied directly in the metamodel. These con-
straints are called structural constraints. If we want to create a constraint
which cannot be declared in the model, we need to create these externally.

The "external" constraints are called attached constraints, and are cre-
ated using a declarative language like Object Constraint Language (OCL) [39].
A solution like this is problematic; a UML model is a graph based model and
OCL is textual language, making it harder to reason about the models. Not
only for the developer, but also for the domain expert(s). There are also
issues with reflecting changes in the model against the OCL constraints,
creating synchronization issues [47]. OCL is an OMG standard and is the
recommended attached constraints facility used in combination with UML
and MDA.

2.4 Language Workbenches

Language workbench is a term coined by Martin Fowler [21] that describes
an environment for creating DSML/DSLs and corresponding tools. The
workbenches should provide an IDE-like environment for creating DSML/D-
SLs, and in addition to generate code it should generate tooling for the
specified language. Language workbenches are a relatively new concept
which has been increasingly popular the last few years, and is under heavy
research and changes. When working with language workbenches, the de-
velopment process are divided into two phases. Figure 2.5 shows how the
DSML is created along with relevant tooling, such as editors and code gen-
erators. This activity should be performed by domain experts, as well as
developers with experience. Using experienced developers will ensure that
the tooling for the language is tailored to the users (which are developers).
The figure also illustrates that developers utilize the domain-specific envi-
ronment created from the DSML.

Martin Fowler describes a few common elements in a language work-
bench [21]:

Semantic Model schema defines the structure of the Semantic Model,
based on a metamodel. In language workbenches the semantic model
is the metamodel used for the model. Fowler uses the term schema
for the metamodel, or DSML if you like. The base model of the tool is
called a schema definition language.

CHAPTER 2. MODEL-BASED DEVELOPMENT 12

Expert
Developer

Domain Expert

Developer

Define
Domain-Specific Modeling Language

Create Tooling for
DSML

Utilize the
Domain-Specific Modeling Environment

Create Model

Generate Code

Create Code
Generator

...

...

Create/Customize
Editor

Language Workbenches

Defining Language and Tooling

Using the domain-specific editor

Figure 2.5: Figure shows the intended workflow for a language workbench.

CHAPTER 2. MODEL-BASED DEVELOPMENT 13

DSML editing environment defines an IDE-like experience when editing
a DSML/DSL, often through projectional editing. Projectional editing
provides some kind of interface where we edit our models. Besides the
diagrammatic approach, there are also schemas, forms, hierarchies
etc. The counterpart of projectional editing is source editing, which is
traditional programming using text files. Some language workbench
solutions gives the opportunity of using multiple projections for your
model, i.e. you can get a schema representation of a diagram based
model, or a text representation.

Semantic Model behaviour defines the semantics of the language speci-
fied. Usually this is achieved through code generation. Although the
model is stored in the language workbench, the computer does not
understand the intent of the model initially. The semantics of a DSML
is defined through model transformations. The model can configure
an API, create an interpreter, do a model-to-model transformation, but
most often generating executable code (model-to-text transformation)
is the chosen solution.

Internal
Representation

Parse

M2T

Target CodePersisted Model

Store

Editor

Editor

Projection

Metamodel
hierarchy

M₁

Mⁿ

Figure 2.6: Figure shows a conceptual view of a language workbench.

Figure 2.6 shows how a language workbench work conceptually. At the
heart of the language workbench, we find an internal representation of any
models we operate on. This might be a single model, or a complete meta-
model hierarchy. It forms the basis for the tools built around it. The tool-

CHAPTER 2. MODEL-BASED DEVELOPMENT 14

ing in a language workbench is defined as anything from the concept of
a schema-definition language to code generators and constraint validation.
The figure shows the most basic parts needed for a functional language
workbench. As discussed in section 2.1.1 the internal representation of the
model is the model. A persistence facility is needed for reuse and storing
of the models. The persisted version of the models are not meant for hand
editing, this should be done through the editing environment.

2.5 Existing Language Workbench Solutions

This section gives a brief overview of some of the more popular projection
based language workbench solutions on the market today.

2.5.1 Eclipse and Eclipse Modeling Framework

The Eclipse Foundation [16] is a non-profit organization which was estab-
lished in 2004 with the goal of creating a vendor-neutral, transparent and
open community around the Eclipse projects. The Eclipse eco-system con-
sists of a vast amount of projects, everything from development tooling to
SOA and web related projects. A common misconception is that when peo-
ple think of Eclipse, they have Eclipse Java Development Tools (JDT) in mind.
Eclipse JDT is a combination of different Eclipse projects, and provides a
feature rich Integrated Development Environment for the Java program-
ming language. This means Eclipse JDT is a collection of (in)dependent
plug-ins which ultimately results in the IDE. The philosophy behind Eclipse
is modularity; at the heart of Eclipse lies Equinox, an implementation of the
OSGi core framework specification, which facilitates the modular nature of
the Eclipse Platform [9]. All functionality in Eclipse is provided through
plug-ins.

EMF

EMF (or rather EMF Core) is the project at the center of Eclipse’s modelling
technologies. The framework aims to unite Java, XML and UML; models in
EMF can be expressed either way, where one can generate one represen-
tation from the other [6]. EMF is a modelling tool which can be found in
the middle of a pure modelling tool and Java code. Instead of following the
"raising abstraction" mantra of pure modelling tools, EMF recognizes the
need for a tool where the programmer can easily understand the mapping
between model and code. EMF provides a modelling environment based on
its own metamodel Ecore (which is a reflexive model). Ecore contains a ba-
sic set of modelling constructs that corresponds to EMOF. EMF also provide
persistence and a code generation facility that can generate Java code from
your metamodel, unit-tests for said code, and the possiblity to generate a

CHAPTER 2. MODEL-BASED DEVELOPMENT 15

simple hierarchy based editor. EMF does not facilitate code generation from
the model instance level. This is handled by other modelling components,
such as tools from the M2T (model-to-text) project.

Ecore

Model

SUS/Original

M₂

M₁

M₀

Figure 2.7: Figure shows a how Ecore fit into the MOF hierarchy.

Figure 2.7 shows how Ecore fit into the MOF hierarchy. As the figure
shows, EMF does not give you the possiblity of multiple metalevels. Al-
though this restriction strengthens the intent of a comprehensible mapping
between model and code, it makes it hard to create a DSML that can be
substituted for code. An important note about Ecore’s MOF hierarchy is
that the levels vary based on what you try to achieve. With the use of the
UML2 support, one have four levels as usual, but if you use Ecore to model
a system directly, you only have three levels.

Figure 2.8: Figure shows editing an Ecore file using the hierarchy view.

Figure 2.8 and 2.9 shows how the creation of a metamodel in Ecore. You

CHAPTER 2. MODEL-BASED DEVELOPMENT 16

Figure 2.9: Figure shows editing an Ecore file using the graph based view.

can choose between the hierarchy solution, or a projectional view which
requires the generation of an Ecore Diagram file.

EMOF defines a limited amount of modelling constructs, among them
classes, attributes, references, packages and operations. These concepts
are easy to understand for any programmer with a background in object ori-
ented languages, and thus creating a clear understanding of the mapping
between model and code. As the MOF standard [38] defines, constraints
beyond cardinality and uniqueness are defined externally. In EMF one can
define invariants which are defined as a boolean method in the model, or
a constraint which is defined as a method on a validator class, not in the
model itself. Either way, hand editing is required to define what the con-
straint/invariant actually constrains. The implementations can use OCL if
desired.

2.5.2 Obeo Designer

Obeo Designer is the product of a french company named Obeo. Obeo is
a consulting company which has a strong focus on MDE and MDA. The
company is an Eclipse Foundation Strategic Member and a contributor on
many Eclipse Modelling projects. Obeo Designer is based on Eclipse EMF,
which means it uses Ecore as its modelling language. The tool’s main focus
is on creating visualizations for your model, as well as generators.

Figure 2.10 shows the editor for creating custom visualizations for your
Ecore model. There is no graphical editor for creating graphics, one have
to choose from a set of pre-defined ones or use an external image.

CHAPTER 2. MODEL-BASED DEVELOPMENT 17

Figure 2.10: Example of creating a custom visualization for an Ecore model in Obeo Designer.

Figure 2.11: Creating Acceleo templates for code generation.

CHAPTER 2. MODEL-BASED DEVELOPMENT 18

One of the promoted features of Obeo Designer is the option of creating
layers in your graph visualizations. This means you can create visualiza-
tions which fulfill a certain criteria. Take a family tree (a simple hierarchy)
DSML as example; if we detect that two people are cousins, we can create
a visualization that shows this by placing an arrow between them or similar.

Figure 2.11 shows Obeo’s own code generation facility Acceleo [1]. Ac-
celeo is further reviewed in section 3.6.2.

Obeo Designer is split up in three products, based on what you need:

Architect Edition Full set of features. Suitable for creating editors and
generators.

Developer Edition Not possible to create editors. Intended for code gen-
eration template developers.

Standard Edition Not possible to create either editor nor templates. This
is edition is intended for using the editors and generators.

2.5.3 MetaCase MetaEdit+

MetaCase’s MetaEdit+ [35] products are one of the most mature solutions
on the market today. The company started out in 1991, having its roots in
work from the University of Jyväskylä in Finland. The schema-definition lan-
guage is based on the Object-Property-Role-Relationship (OPRR) model. A
MetaEdit+ metamodel consists of three parts; a GOPRR model, a code gen-
erator (specified with a custom DSL), and a graphical notation for the OPRR
model. MetaEdit+ is split up in two different products, MetaEdit+ Work-
bench and MetaEdit+ Modeler. The workbench is used by the "metamod-
eler" to create a language, generator and graphical notation. The MetaEdit+
Modeler is used by developers to utilize the languages created in the Work-
bench, or with a pre-defined metamodel as basis. This follows the workflow
shown in figure 2.5.

Figure 2.14 shows the editor where metamodels are created using GO-
PRR which consists of the following modelling concepts [36]:

Graph Specifies a modelling language.

Objects This is the main type which is the node in the graphs. Used to
model e.g. classes and states.

Object set A collection of objects.

Property This defines a property on a object. E.g name and ID.

Relationship Connection between two or more objects. The relationships
are connected to objects with roles. This is equivalent to an associa-
tion in UML.

CHAPTER 2. MODEL-BASED DEVELOPMENT 19

Figure 2.12: Figure shows the editor for metamodelling.

CHAPTER 2. MODEL-BASED DEVELOPMENT 20

Role A role defines how an object behaves in a relationship. Each object in
the relationship has a defined role. E.g. in an inheritance relationship,
you have two roles: ancestors and descendants.

GOPRR follows the four level hierarchy the same way Ecore does. You may
model your system directly and "skip" a level, or specify another language.
MetaCase includes a lot of languages for some more or less popular domains
for reference and use. Among them we find DSMLs for insurance, UML,
state machines, family trees, home automation etc.

Figure 2.13: Figure shows the editor for creating custom symbols.

One of the biggest features in MetaEdit+ is the ability to create cus-
tom symbols for the metamodel. These symbols can greatly improve the
modelling experience for users of the DSML. Figure 2.13 shows the symbol
editor where it is possible to draw a symbol or import graphics. This partic-
ular example shows a menu entry with a list of items in a Symbian Series 60
application DSML. The symbols can utilize particular aspects of the object
entities.

Figure 2.14 shows the creation of a Series 60 mobile application using
the DSML defined in MetaEdit+.

Figure 2.15 shows the code generation template editor for the Series 60
example in 2.14. A metamodel can have several code generators associated
with it.

CHAPTER 2. MODEL-BASED DEVELOPMENT 21

Figure 2.14: Editing an instance model of the Series 60 language in MetaEdit+.

Figure 2.15: Template editing in MetaEdit+.

CHAPTER 2. MODEL-BASED DEVELOPMENT 22

Constraints in MetaEdit+ are created inside the model, which means
that there is no support for attached constraints (e.g. OCL). Unfortunately
all constraints are pre-defined and there is no possiblity of creating custom
constraints with corresponding symbol. All constraints are validated when
modelling. A few of the pre-defined constraints include:

Multiplicity

Uniqueness

Connectivity Constraints

Explosions and Decomposition
A state in state diagram may be expanded into a separate diagram.

The MetaEdit+ products are stand-alone proprietary software and is not
built on Eclipse or similar platforms. It does however provide plug-ins for
both Visual Studio and Eclipse with its new 5.0 release. MetaEdit+ supports
Windows, Linux and Mac, but the latest beta release (which the illustrations
are from) only supports Windows.

2.6 Diagram Predicate Framework

Diagram Predicate Framework (DPF) is an ongoing project at Bergen Uni-
versity College and the University of Bergen. The project started in 2006
with the aim to create a formal approach to MDE, with features as metamod-
elling, model transformations and model management. The framework is
based on the Generalised Sketches formalism by Zinovy Diskin [11], and re-
lies heavliy on mathematical concepts like category theory and graph trans-
formations.

DPF facilitates a completely diagrammatic approach to MDE. DPF pro-
vides a multi-layer diagrammatic metamodelling hierarchy, where the need
for attached constraints are removed. One of DPF’s strengths is its general
nature; it can be used as pattern to model other modelling language like
UML, petri-nets and ER diagrams [48].

• A DPF model consists of a specification S which consists of an under-
lying graph S, along with a set CS of atomic constraints (π, δ).

• A signature Σ = (ΠΣ , αΣ) consists of a collection of predicate symbols
ΠΣ .

• The constraints are instances of predicates ΠΣ .

A predicate consists of a symbol, shape graph, visualization and a seman-
tic interpretation. Predicates are defined within a signature. Listing 2.3
shows the XML based definition of a multiplicity predicate. It defines a

CHAPTER 2. MODEL-BASED DEVELOPMENT 23

<predicates symbol="[mult(m,n)]">
<shape id="41921737-3a3a-4404-8d2a-a4ffe39da992" name="Default name">
<nodes id="0867fde8-4eb6-4d42-be2d-715540a584d6" name="n_1"/>
<nodes id="c4cce51b-3ab0-4e96-970a-18849131cbb3" name="n_2"/>
<arrows id="554183df-2788-4469-ba63-84973bbb1d17"

target="//@predicates.10/@shape/@nodes.1"
source="//@predicates.10/@shape/@nodes.0" name="a_1"/>

</shape>
<semanticsValidator xsi:type="no.hib.dpf.core:MultiplicitySemantics"/>

</predicates>

Listing 2.3: A predicate for a multiplicity constraint.

shape graph with two nodes and an arrow, a textual symbol [mult(m,n)],
and the semantic interpretation which is a Java based validator.

A central concept in DPF is graphs and graph homomorphisms. A graph
homomorphism ϕ is a mapping from a graph G to another graph H, where
the mapping preserves the source and target of each arrow. An atomic
constraint (π, δ) in DPF consists of a predicate symbol as well as a graph
homomorphism which defines what parts of the graph it constrains.

DPF defines two types of conformance relations which is typed by and
conforms to. A meta-level Si is typed by the meta-level above Si+1 if
there is a graph homomorphism (also called typing morphism) between
the two meta-levels’ underlying graphs: ι[i] : S[i] → S[i + 1]. A specifi-
cation Si at metalevel i is said to conform to a specification Si+1 at met-
alevel i + 1 if there exists a typing morphism ι[i] : S[i] → S[i + 1] such that
(S[i], ι[i]) is a valid instance of Si+1 ; i.e. ι[i] satisfies the atomic constraints
CSi+1 [44] [47]. See [47] [46] for further discussions on DPF.

2.7 DPF Editor

The DPF Editor is the reference implementation of DPF and its concepts [13].
There have been a few attempts the last years to implement earlier versions
of DPF. The first attempt was performed by Ørjan Hatland in 2006 [24], a
tool based on Microsoft .NET technology. This implementation was never
completed and was not considered to be a good foundation for further de-
velopment. In 2008, Stian Skjerveggen began the work on an Eclipse based
solution [49]. The core technology in this project was Graphical Modelling
Framework (GMF) [52], a framework that facilitates generation of graphical
editors and tooling, based on EMF and Graphical Editing Framework (GEF).
GEF facilitates creating rich graphical editors in Eclipse. This technology is
somewhat "low-level", and requires a bit of work to achieve the same level
of functionality which GMF can generate. GMF was at the end of the project
deemed unsuitable for an implementation of DPF.

In 2010, Øyvind Bech and Dag Viggo Lokøen started the work on the

CHAPTER 2. MODEL-BASED DEVELOPMENT 24

current implementation of DPF, the DPF Editor [4]. It is written from scratch
using EMF and GEF and supports the most essential features concerning
metamodelling:

• Graph based projectional editing of models

• Storing/loading the models as XMI

• Arbitrary number of metalevels

• Checks typing between metalevels if there exists a graph homomor-
phism

• Checks constraints between metalevels

• Creation of predicates and corresponding Java validators

• Different simple symbols on nodes (circle, ellipse, rectangle etc.)2

None of the previous attempts to create DPF based software has reached
a level of maturity where facilitating code generation was considered.

Figure 2.16: Creating a DSML in the DPF Editor.

Figure 2.16 shows the editor view in the DPF Editor. We start off with
only Node and Arrow when creating a DSML. The figure depicts a simple
language for creating domain classes in web application. This model forms
the basis for the tool demonstration i chapter 5 and will then be explained
further. Figure 2.17 shows a subset of the DSML in figure 2.16 and how
the different metalayers are typed by each other. The dotted lines shows
conformance between the types levels.

2The creation of predicates and visualizations are later work by Ph.D. student Xiaoliang
Wang.

CHAPTER 2. MODEL-BASED DEVELOPMENT 25

content

articles

Arrow

Attribute

name

birthdate

Node

Type

Author

DomainClass

String

Date

Article

Reference

M₃

M₂

M₁

Figure 2.17: Shows how the different DPF layers of a simple domain class DSML conforms to
each other.

2.8 Comparison

The evaluated tools has its strengths and weaknesses from a language work-
bench point of view. The concept of a language workbench is a pragmatic
one, and this emphasizes usability of the tools. Even though EMF, Obeo De-
signer and MetaEdit+ are all mature products with a lot of users, they do
not necessarily do everything right. A common problem is messy unintuitive
user interfaces which significantly raises the bar for learning the software.

The most complete (and most mature) tool, is MetaCase’s MetaEdit+.
It supports a wide variety of pre-defined popular modelling languages, but
also has its own schema definition language, GOPRR. Obeo Designer im-
proves on the shortcomings of plain EMF, with the possiblity of creating
custom visualizations and support for code generation on the model level
with Acceleo. Table 2.1 shows that a common trait between the three eval-
uated solutions; all support different forms of projections. The Projection
Types row use capital letters for describing a projection type: D for dia-
grammatic, H for hierarchy, M for matrix and T for table.

Of the reviewed solutions we see that only the DPF Editor provides multi-
level metamodelling, while the other adheres to the levels of MOF. As de-
scribed, all three reviewed tools have a fixed number of metalevels. The
metalevels may vary, because one can define e.g. UML through MOF’s mod-
elling facilities as shown in figure 2.4. When it comes to constraints, we see

CHAPTER 2. MODEL-BASED DEVELOPMENT 26

that EMF only have support for structural constraints inside the model and
is dependent on external functionality for more advanced constraints. Since
Obeo Designer is built around EMF, the same applies. MetaEdit+ has, like
the DPF Editor, support for more advanced constraints within the model.
There is however no option for defining constraints like in the DPF Editor,
as they are fixed.

The DPF project can learn from other tools as there is a lot of room for
improvement. The lessons learned are both good and bad; the tools stud-
ied all have usability issues, mostly related to complicated user interfaces.
Having to use OCL for constraints also complicates the modelling process.
Ideas like the symbol editor and multiple ways of projecting the model are
some of the interesting features which the other tools more or less provide.

A "projection" which none of the tools provide, are textual representation
of the models (beyond serializing). The Language Workbench Competition
(LWC) which is a part of the Code Generation [31] conference, refers to
a language workbench that supports both diagrammatic and textual repre-
sentation of a model as "the one language workbench to rule them all"3.

Tool EMF Obeo Designer MetaCase
MetaEdit+

DPF

Schema Definition
Language

Ecore Ecore GOPRR DPF

Symbol Editor No No Yes No

Projection
Types

D/H4 D/H/M/T D/H/M/T D

Code Generation
Facility

Yes5 Yes (Acceleo) Yes No

Multi-level
metamodelling

No No No Yes

Constraints OCL OCL Model-
based/Fixed

Model-
based/Custom

Table 2.1: Language workbench features

3Florian Mantz has created a textual version of DPF in his Ph.D. thesis work. This work is
currently not integrated with the DPF Editor.

4EMF provides a diagrammatic view for the metamodel, but not for the models.
5EMF generates editors and code for your metamodel, but does not facilitate code genera-

tion from the instance model.

Chapter 3

Code Generation

This chapter will give an understanding of the concept code generation, as
well as the motivation behind it. The section Framework Analysis (3.6) will
evaluate a few chosen code generation solutions, with a comparison at the
end. Lastly, the Xpand code generation framework will be introduced.

3.1 What is Code Generation?

Code generation, also called automatic programming, is the process of au-
tomatically generate source code from some kind of specification (e.g. mod-
els). The user specifies what to do, the computer generates source code
which perform the task. Generating code is a common practice in todays
software development, where modern IDEs in particular take advantage of
this technique. The popularity of large middleware platforms, such as Java
EE and Spring, has shown the advantages of code generation with its exten-
sive need for configuration. These configuration files are often written in
XML and are tedious and time consuming to write by hand. Another exam-
ple is project wizards in IDEs which generate the needed configuration and
templates for your project. The focus in this thesis will not be on generating
specific configuration files for an arbitrary framework, instead we will fo-
cus on a general solution for creating production code from domain-specific
models. These models can indeed result in build scripts or XML, however
we want to generate production grade code for certain aspects of a system.

Generating code is done through a model transformation, more specifi-
cally model-to-text transformations. Through a set of transformation rules,
we generate text which results in usable code. A transformation rule could
be an expression in a template, or simply plain Java code that outputs a
string based on some satisfied statement. In language workbenches code
generation is very common, as the tool itself usually do not run the DSML
which is created. DSLs on the other hand, is very often used as a wrapper
around an API.

27

CHAPTER 3. CODE GENERATION 28

3.2 Why use Code Generation?

Using code generation yields a lot of advantages not only in the context of
MDE, but also as a general technique in the programmers toolbelt. Her-
rington [25] lists a few:

Consistency The generated code has a consistent feel, using the same
naming conventions and style. This results in familiar interfaces for
the users.

Quality Having many programmers creating handwritten code may result
in an inconsistent code base that must be updated manually on API
changes. If this code can be generated, the generator has the advan-
tage of generating all the classes at once which reflects the changes
made.

A single point of knowledge A change within e.g. a database, can have a
chain reaction in your project; code, documentation and build scripts
needs to be changed. This can be avoided using code generation.

More time for development After spending the initial time-cost of creat-
ing proper models and generators, one can save a lot of development
time. This is time that can be spent creating new features, and/or
fixing existing ones.

Abstraction The power of domain-specific modelling enables us to express
more functionality in a consise manner.

Even though the benefits are big, there are always concerns about the
code being generated, such as quality and efficiency. In the CASE-tools era,
the fixed general modelling languages made it difficult to generate anything
other than static code/schema definitions. With domain-specific modelling
we are now able to generate both the static and functional code. This con-
trast may be the source to some of the skepticism we see today. The effi-
ciency concern is about generating code for e.g. an embedded system with
very limited resources, where handwritten code often is optimized with dif-
ferent workarounds and hacks.

These concerns are as old as computing; when programming languages
with a higher abstraction level came to existence, there was always concern
that these languages could never generate code as good as hand written ma-
chinecode. History has shown that if given enough time, compilers become
so advanced and effective that it is not feasible to hand write low level code
for the sake of efficiency. Compilers do a lot of optimizing on its own, and
any particular hacks used could easily be included in the generator, and
thus creating as efficient code as the handwritten counterpart. The expres-
siveness of models gives us the power to create functional code which is
safe and efficient; it really comes down to how the model and generator is
defined.

CHAPTER 3. CODE GENERATION 29

Tolvanen and Kelly [29] claims boldly:

“When code is produced by a generator made by an experienced
developer, it will always produce better code than the average
programmer writes manually.”

3.3 Creating a Code Generator

In a MDE environment, we need our models understood by a computer. The
usual way of doing this is to either generate code, generate an interpreter
or populate a semantic model. The last option is more likely to be used
with textual DSLs rather than a DSML created in a language workbench,
and is less relevant in the context of the DPF Editor. When creating a code
generator, there are two things that is needed; the input (DSML) and a
sample output of what you want to generate. After all, code generation is a
model transformation. Through our generator, we express rules that maps
our input to the output. If you attempt to create the generator first, you can
end up creating a language that is to general for your domain. When you
have both the output and the model in place, the generator creation will be
a much simpler task.

Transformer Generation This method uses a programmatic approach, where
a generator traverses an input model directly in the programming lan-
guage, and creates code statements. This approach is suitable when
targeting one specific environment (although it can be generalized)
and most of the code is generated from the model, i.e. low amount of
static code.

public String buildClass(Node n) {
StringBuffer buf = new StringBuffer();

buf.append("public class " + n.getName() + " {");

for(Attribute a : n.getAttributes()) {
buf.append("private " + a.getType() + " " + a.getName() ";");

}

buf.append("public " n.getName() + "{");
buf.append("}");
buf.append("}");

return buf.toString();
}

Listing 3.1: Example showing a Java method building code.

Listing 3.1 shows a simple Java example where we build a class with
private instance variables and a default constructor. Although easy

CHAPTER 3. CODE GENERATION 30

to understand, these classes can grow very big when generating ad-
vanced functionality. Another issue is formatting the output; one needs
to either format it as you create the code, or after. Formatting as you
go, requires a way to keep track of indents and newlines. Formatting
after the code is generated can be achieved by exploiting an existing
formatter, like what Eclipse Java Development Tools provides, instead
of creating one from scratch.

Templated Generation Templated generation consists of a template en-
gine, a template language and sometimes a standard library that pro-
vides simple functionality for use within the templates. A template
engine uses external files, called the templates, which uses a template
language. This language uses markers to identify where certain parts
of the code should be insterted. A template based solution is recom-
mended when you have a lot of static code and/or configuration code,
or you want to target several environments. This approach is the one
chosen for this thesis and is investigated more in section 3.6.

Another issue that needs to be addressed is what you want to generate
with your generator. Most of the time, there is no need to generate a com-
plete runnable application. A common practice is to generate code for a
domain framework in your target environment. If no such framework ex-
ists, it might be a good idea to investigate the possibility of creating one.
Such frameworks can greatly simplify the generated code by abstracting
away repeated concepts.

Model-to-model Transformations (M2M)

Creating textual output from a generator is not always the best solution.
Sometimes generating a new model might fit the development workflow
better. A motivation for such a scenario is that the model is not descriptive
enough to directly generate code. A real world example of this is the MDA
workflow, where PIMs are transformed into PSMs as a step on the path to
textual output.

3.4 Editing Generated Code

Ideally the generated code should work on its own, without any editing. This
is a consequence of the effort put in when creating the DSML and associ-
ated tools. According to Kelly and Tolvanen [29], a proper DSML should be
analogous to compiling general programming language code. The reality
is somewhat different as the need for mixing generated and handwritten
code is not seldom. The general rules are not to modify generated code and
keeping generated code separated from handwritten code. To achieve these
goals there are a few techniques [21]:

CHAPTER 3. CODE GENERATION 31

Keep generated code in a separate folder
This reduces the risk of editing code and losing the changes upon re-
generation.

Partial classes
Partial classes provides the option of splitting classes into separate
files. This is supported by Smalltalk and C#. This is however not
supported in Java, C++ etc.

Generation gap pattern
Generation gap pattern is probably the most general solution for this
problem. It uses inheritance to extend functionality; a generated class
acts as a superclass which you inherit with a handwritten class. The
only drawback is the need for relaxing visibility rules in the superclass.

Annotations
This approach lets you mix handwritten and generated code using an-
notations (Java) or attributes (C#). In some cases this might be the
best solution. E.g. when generating code from an EMF model, it is
often necessary to hand code some of the functionality in declared op-
erations. It is then possible to use annotations to mark which methods
should be generated or not with the @generated NOT annotation.

Protected Regions
With protected regions you place a marker, often a start marker and an
end marker, in the source code where you want the generator to not
re-generate. This can be seen as a general approach to annotations
based protection.

3.5 Metamodels and Code Generation

So far the discussion has revolved around general principles and techniques
concerning code generation. When using template based solutions (see 3.6)
one operate directly on objects in the host language. The template engines
were probably not built with MDE in mind and are thus more general. One
of the biggest uses are rendering web pages. In the context of models, one
would work directly on the model’s internal representation, like listing 3.2
shows. There is one big drawback of this approach, and when our solu-

<% Node n = (Node)argument;%>
class <%=n.getName()%>

Listing 3.2: Simplified Java Emitter Templates (JET) example of using an object directly.

tion is supposed to facilitate code generation for any arbitrary model, it is
quite essential: there is no way of expressing domain concepts in a simple
elegant manner. Giving the user a template engine and a clean template for

CHAPTER 3. CODE GENERATION 32

their DSML would work, but do not address the problem at all. We need to
express the most essential part of MDE, the domain concepts, in such a way
that it is intuitive and easy to create code generators.

To express the domain concepts we need to look at the DSML, not the
model (instance). The goal is to express an arbitrary DSML and its concepts
in a chosen template language. Creating such a solution from the begin-
ning would entail a lot more work than the time-frame of this thesis would
allow. Luckily, the Eclipse M2T project has addressed this issue with a few
solutions described in the next section.

3.6 Framework Analysis

This section gives a brief overview of the different code generation solu-
tions that was considered in this project. The chosen solution, Xpand, is
introduced with a short overview of features. This will be discussed in de-
tail in section 3.7.

3.6.1 Template Engines

Both JET and Velocity are simple template engines, which provide nothing
more than an engine, a template language and a “standard library” with
functions to alleviate the use of Java code in the templates. Choosing these
solutions would entail the creation of an API that exposed the desired func-
tionality; the domain concepts of the DSML and associated operations/meth-
ods. Creating an API like this would be a messy complicated solution.

Creating editor support which exposed the DSML properly would not be
an easy task to achieve as these engines have no interpreter which could
interpret the models during runtime. Figure 3.1 depicts the idea behind a
template engine. You have some kind of data source (e.g. a model) which
get matched towards a template that have markers on where to insert data.
After the compilation, the engine outputs what is defined in the template.

JET

Java Emitter Templates is a template engine in the M2T (model-to-text)
project within the Eclipse ecosystem. JET provides a well known syntax
based on JSP, which has a standard tag library included, that can be ex-
tended with custom tag libraries. It comes with editor support and integra-
tion with the Eclipse UI.

Listing 3.3 shows a very basic example on how a JET file could look
like. We also see that objects are used directly, and not interpreted as the
generator frameworks.

CHAPTER 3. CODE GENERATION 33

Model

Template

Output
Template Engine

Figure 3.1: Figure shows a conceptual view of a template engine.

<%@ jet package="generator.dpf"
class="DpfGen"
imports ="generator.dpf.blog.Article no.hib.dpf.core;"

%>
<% Article art = (Article)argument;%>
public class <%=art.getName()%> {

public <%=art.getName()%>() {

}
}

Listing 3.3: Simple example showing the JSP like syntax in JET

CHAPTER 3. CODE GENERATION 34

Apache Velocity

Velocity shares a lot of the same properties that JET possesses. The main
difference is the template language, where Velocity provides its own. The
language is simple, yet powerful, and provides the same functionality that
JET can offer. If the standard functionality is not enough, there are sub-
projects like VelocityTools that solves problems like date and number for-
matting, math operations and more. There is a strong focus on separating
code from the templates, thus enforcing patterns like MVC. There is no ed-
itor support for Eclipse out of the box, this is achieved using third party
plug-ins.

<HTML>
<BODY>
Hello $customer.Name!
<table>
#foreach($mud in $mudsOnSpecial)

#if ($customer.hasPurchased($mud))
<tr>
<td>
$flogger.getPromo($mud)

</td>
</tr>

#end
#end
</table>

Listing 3.4: Example showing the Velocity template language

3.6.2 Code Generation Frameworks

A code generation framework is more than a simple template engine. The
biggest difference lies with the additional tooling around the engine, like
debugging, editor support and profiling of templates. The problem identi-
fied in section 3.5 is addressed in these tools through a built-in interpreter
which interprets the DSML, and creates a template editing environment
where the editor support reflects the domain concepts of the DSML.

Acceleo

Acceleo [1] is the product of Obeo, the same company that is behind Obeo
Designer. The project has been in development since 2006, and was in-
corporated into the Eclipse M2T project in 2009. Acceleo is the reference
implementation of Object Management Group’s MOF model to text trans-
formation language (MOFM2T) [41]. It has full integration with EMF, which

CHAPTER 3. CODE GENERATION 35

means you can use Ecore, UML2, etc. The framework has support for de-
bugging and profiling templates, as well as editor support with auto com-
pletion and content assist. The debugger has its own Eclipse view where
you can debug the templates directly using breakpoints. You can also step
over/into/return functions like Eclipse JDT provides for Java.

Another notable feature is the generator module system. A generator
module is a plug-in with pre-defined generator templates for a particular
domain. This enables the users of Acceleo to take advantage of available
generators for popular domains. The drawback of this system is that the
generators are (of course) bound to a specific type of metamodel, and might
not be tailored to the specified requirements.

[template public generate(aClass : Class)]
[file (aClass.name.concat(’.java’), false)]
public class [aClass.name.toUpperFirst()/] {
[for (p: Property | aClass.attribute) separator(’\n’)]
private [p.type.name/] [p.name/];

[/for]
[/file]

[/template]

Listing 3.5: Example showing the MOFM2T language used in Acceleo

Xpand

Xpand [54] is a framework under the Eclipse M2T project that facilitates
MDE activities such as code generation, model validation and model trans-
formations. The company behind Xpand is Itemis [27], a german consulting
company focusing on utilizing MDE in projects. Xpand has a wide variety
of features which makes it a good fit for this projects requirements. Most
notably, you can create editors (with code completion and syntax highlight-
ing) from metamodels specified in EMF Ecore, UML2, XSD and JavaBeans.
Besides the predefined metamodels, it is possible to define a custom meta-
model that is based on an arbitrary modelling language. Xpand is discussed
in detail in section 3.7

Comparison

Table 3.1 gives an overview of the different features in the evaluated solu-
tions:

Template Language The language used in the templates.

Editor Support All the considered solutions provide some kind of editor
support with syntax highlighting and template validation. The differ-
ence from the template engines to generator frameworks lies with how

CHAPTER 3. CODE GENERATION 36

this editor support is provided. Xpand and Acceleo interprets the input
models and provide an environment for creating templates, extensions
and validation based on the metamodel. In a DPF context this means
you operate on the concepts of the DSML, rather than the instance
model’s actual Java objects. This is discussed in detail in section 3.7.

Custom Metamodel Xpand and Acceleo provide support for EMF and UML
models out of the box. This means an UML model will act as a meta-
model, i.e. expose its domain concepts in the editor environment. This
is discussed in detail in section 3.7.

Profiler/Debugger Profilers are used to optimize your templates and ex-
tensions, and gives an overview of which parts of the system that is
slow. Both Acceleo and Xpand has a profiler. A debugger is useful for
finding bugs inside the templates. Acceleo allows you to debug tem-
plates like Java classes in Eclipse, with a debug view, breakpoints and
stepping over/into/return functions.

Tool Template
Language

Editor Support Custom
Metamodel

Profiler/
Debugger

Apache Velocity VTL No No No

Eclipse JET JSP No No No

Acceleo MOFM2T Yes No Yes

Xpand Xpand Yes Yes No

Table 3.1: Feature comparison in template engines

The reason for choosing Xpand is together with the rich tooling, the pos-
sibility of creating a custom metamodel. The included profiler is a welcomed
feature, but was not critical to the choice of solution. The choice of tem-
plate language was not crucial either, but a language with its foundation in
a standard is a positive trait. Acceleo is providing the same functionality as
Xpand with some minor differences in the tooling. A simpler choice would
have been either JET or Velocity, but this would be a poor solution for the
end-users because of the lack of tooling. Both Acceleo and Xpand provides
a "sandboxed" editor environment, which means the template coder only
has access to the DSML concepts which is defined through a Xpand/Acceleo
metamodel.

3.7 Xpand

Xpand is created and maintained by the german consulting company Itemis [27].
Before the project was included into the Eclipse M2T project, it was called
openArchitectureware (oAW) [43]. The functionality is the same, but the
project has been split up into different Eclipse projects. Xpand is under the
M2T project, while the Modeling Workflow Engine (MWE) is under Eclipse

CHAPTER 3. CODE GENERATION 37

Modeling Framework Technology (EMFT). The workflow engine connects
the different components in Xpand and executes them. Even though the
components have a clear separation, we will use Xpand for all of the in-
cluded technologies, and explain them when needed.

The biggest difference from a simple template engine, is the built-in in-
terpreter that interprets a DSML and provides functionality based on what
a Xpand metamodel dictates. In Xpand, the metamodel is the internal map-
ping from types in the DSML to types that Xpand understands. Xpand
comes with metamodels for the most popular modelling facilities today;
EMF, UML2, XSD and plain Java classes. Although these metamodels covers
the most used languages, it lacks support for DSMLs specified in anything
besides what Xpand has to offer. There are a lot of proprietary DSMLs out
there which is not modeled in any of the mentioned languages. Acceleo
solves this by saying you need to specify your DSML in EMF/EMOF. This
is not a generic solution, and requires the users to create a new EMF/E-
MOF implementation for each new language that is created. A solution to
this problem is to create a model-to-model transformation which can trans-
form your DSML to EMF. The disadvantage is that you are still restricted
to the functionality that the Acceleo metamodel defines (which is the EMF
concepts), when you perhaps would want to define your own.

DPF is a framework for creating DSMLs, and as discussed in chapter
2, DPF Editor falls under the language workbench category. The use case
for the DPF project is to generate tooling based on a specified DSML; we
want a generic way to define generators for an arbitrary DSML. This use
case is a bit narrow, and is probably why Acceleo has not facilitated cus-
tom metamodels. Xpand fits our criteria nicely with the ability to create
custom metamodels with custom attributes and operations. Xpand lets us
create a separate API used only in the templates and extensions, on top of
the existing functionality that resides in the DPF Core API. The metamodel
defines a mapping from DPF types to Xpand types which is reflected in the
template/extension editor.

Xpand is a feature rich framework with features as aspect-oriented pro-
gramming (AOP), functional extensions, model-to-model transformations,
model-to-text transformations and model validation. The framework pro-
vides three different languages that has separate functionality; Xpand, Xtend
and Check.

Xpand
Xpand is the template language that controls the output of the gen-
erator. Apart from the usual control flow statements, it supports lazy
evaluation, let statements, aspect oriented programming and exten-
sions created using Xtend and/or Java.

CHAPTER 3. CODE GENERATION 38

«IMPORT dpf
«EXTENSION org::eclipse::xtend::util::stdlib::io»

«DEFINE main FOR dpf::Specification»
«EXPAND graph FOR this.graph»

«ENDDEFINE»

«DEFINE graph FOR dpf::Graph»
«EXPAND domainclasses FOREACH this.getDomainClasses()»

«ENDDEFINE»

«DEFINE domainclasses FOR dpf::DomainClass»
«syserr(this.name)»

«ENDDEFINE»

Listing 3.6: Example showing the Xpand syntax

This listing shows a simple template where we traverse our DPF Spec-
ification and print out the name of a DSML type called DomainClass.
We also see how the inclusion of extensions are performed. These
extensions are defined in Xtend and/or Java.

Xtend
Xtend is used as an extension language. It follows the functional
paradigm and provides features like type inference, recursion, caching
of methods and calling external Java extensions. It also provides ways
to perform model-to-model transformations. This language helps to
enforce the separation between program logic and template code; it
is strongly encouraged to perform logic in an extension, and call the
extension from the template. Such extensions are called embedment
helpers [21].

importDate(dpf::DomainClass this) :
if this.getAAttributes().exists(e | e.target.name == "Date") then

"import java.util.Date;";

String paramList(List[dpf::DomainClass] this) :
JAVA no.hib.dpf.codegen.generator.extensions.

StringUtil.getAttributeList(java.util.List);

Listing 3.7: Example showing Xtend extensions

Listing 3.7 shows the Xtend language, with two Xtend methods. importDate
shows how we detect a Date type defined in our DPF model. If such
a type exists, we return a string that contains an import statement.
This example demonstrates the type inference by not declaring a re-
turn value. It also showcases some of the functional syntax with the
exists statement, which returns a boolean value based on the expres-
sion within. The last example shows how a Java extension is called
from Xtend. Type inference from these extensions are not supported,

CHAPTER 3. CODE GENERATION 39

so we explicitly need to declare the return type. We also observe the
need to use fully qualified method names for the extension class. This
method in particular returns a String that has been constructed from
a list of DomainClass types.

Check
The Check language handles constraint checking on the model.

import dpf;

context Attribute ERROR
"Name of " + name + "too short." : name.length > 1;

Listing 3.8: Example showing a simple constraint check

Listing 3.8 shows a simple constraint check. The first line imports the
metamodel. The second and third line checks the length of property
name in Attribute, and returns an ERROR if the test fails. Denoting
the Check statement with ERROR will abort the workflow and print the
error to a console. Alternatively, one can use WARNING, which will print
the warning and continue the workflow. In the DPF Editor the con-
straint checking is done within the DPF model, but all validation could
happen in the generation phase using Check if desired.

These languages are built upon the same type system, and share a lot of
the syntax. The shared syntax is called the expression sub-language and
provides the basic flow control constructs of all the three languages (e.g. if-
conditions, switch statements, casting). The expression sub-language syn-
tax is a mix between Java and OCL.

Workflow

The Modeling Workflow Engine (MWE) provides a way to execute different
Eclipse modelling components in a sequential manner. The execution envi-
ronment can be inside Eclipse or standalone. Modelling components do not
have to be part of the Xpand framework; a component needs to adhere to
an interface which MWE provides.

A workflow is defined in a XML file, where each component has its own
configuration. Some of the components in Xpand are shown in listing 3.9.
A workflow do not have to include all of the components shown; a typical
workflow for generating code only consists of a reader and generator com-
ponent.

CHAPTER 3. CODE GENERATION 40

Listing 3.9 shows a workflow file where an Ecore model is used for input:

1. The first lines declares properties for model location and the output
folder for the results.

2. StandaloneSetup is used to initiate EMF specific functionality, like
platform:/resource URIs.

3. Initiation of the Xpand metamodel. The handle mm_emf is used to refer
the metamodel throughout the workflow definition.

4. The Reader component is used to read the input model’s Ecore, and
then create a slot which stores the model in a named attribute.

5. This is the configuration of the Check component. We define the EMF
metamodel to operate on, as well as the name of the Check file.

6. The Xtend component performs a model-to-model transformation based
on the rules specified in the Xtend file.

7. The generator component is the one generating code. We start off by
defining the EMF metamodel, then we define the entry point in the
templates, and also refer the model that the template should be run
on. Finally, we define an outlet path where the resulting code should
be written to. We also apply a postprocessor to our output, in this case
a JavaBeautifier. The JavaBeautifier is a class which format the
generator output to our needs. There are postprocessors included in
Xpand for C++, Java and XML.

It is important to point out that the order of the components matter.
Before using a Xpand metamodel it is necessary to use its corresponding
reader component first (if it has one). Using a metamodel dependent com-
ponent with an uninitalized metamodel will result in errors.

Model Textual OutputWorkflow components

Parser Validation Transformer Generator

Check Xtend Xpand

Figure 3.2: Figure shows how the workflow engine works.

Figure 3.2 depicts a workflow in Xpand. Although a usual workflow, all
of the components are optional, and could be replaced by something else.

CHAPTER 3. CODE GENERATION 41

<?xml version="1.0"?>
<workflow>

(1) <property name="model" value="path/to/model/Model.xmi" />
<property name="src-gen" value="src-gen" />

(2) <bean class="org.eclipse.emf.mwe.utils.StandaloneSetup" >
<platformUri value=".."/>

</bean>

(3) <bean id="mm_emf" class="org.eclipse.xtend.typesystem.emf.
EmfRegistryMetaModel"/>

(4) <component class="org.eclipse.emf.mwe.utils.Reader">
<uri value="platform:/resource/${model}" />
<modelSlot value="model" />

</component>

(5) <component class="org.eclipse.xtend.check.CheckComponent">
<metaModel idRef="mm_emf"/>
<checkFile value="metamodel::Checks" />
<emfAllChildrenSlot value="model" />

</component>

(6) <component class="org.eclipse.xtend.XtendComponent">
<metaModel class="org.eclipse.xtend.typesystem.emf

.EmfRegistryMetaModel">
<metaModelFile value="${model}"/>

</metaModel>
<invoke value="test::Trafo::duplicate(rootElement)

"/>
<outputSlot value="newModel"/>

</component>

(7) <component class="org.eclipse.xpand2.Generator">
<metaModel idRef="mm_emf"/>
<expand

value="template::Template::main FOR model"
/>

<outlet path="${src-gen}" >
<postprocessor class="org.eclipse.xpand2.

output.JavaBeautifier" />
</outlet>

</component>
</workflow>

Listing 3.9: An example MWE workflow file

CHAPTER 3. CODE GENERATION 42

3.7.1 Xtend 2

In December 2011, version 2.2 of Xtend [17] was released. This is Xpand’s
successor, and is the main focus for Itemis from now on. Xpand will be
maintained for a while, but will probably be dropped in favour of Xtend 2 in
the longterm.

The naming is a bit confusing, as the Xpand framework has a separate
language called Xtend (see listing 3.7). Xtend 2 is a complete rewrite and
is not compatible with older versions of Xpand. It is based on Xtext [18],
another Eclipse project created by Itemis. Xtext is a language workbench
for textual languages where one can create editors and generators from a
grammar. Currently Xtend 2 is a part of the Xtext project, but will in time
become a separate project. The reason for this re-implementation is men-
tioned in the lead developer Sven Efftinge’s blog [50]; performance issues,
poor tooling and shortcuts in the language.

Xtend 2 is a fully-fledged programming language, which compiles to
readable Java code. The language aims to reduce the verbosity of Java,
and support features like type inference, closures and operator overload-
ing. Generating code is done through what is called template expressions,
which is the syntax from Xpand embedded into the Xtend 2 language. In-
stead of the interpreter based approach of Xpand, the template expressions
are compiled to Java code. At the time of writing, Xtend 2 do not provide the
same functionality as Xpand as it has no support for loading custom models.

Xtend 2 can work on a grammar defined in Xtext, which in its turn has
its foundation in EMF Ecore. More information on this works can be found
in the Xtext/Xtend documentation [19]. Further information on Xtend 2 can
be found at Xtend web site, and Sven Efftinge’s blog as well [17] [50].

Chapter 4

Design and Development

This chapter gives an in-depth look at how the implementation of the code
generation tool works, and how it fits together with the DPF Editor and the
Xpand framework. The different components and their function will be ex-
plained. In the end of the chapter there will be an overview of what has
been achieved throughout the development, and what the tool’s shortcom-
ings are.

In the Xpand documentation, the mapping between a DSML and the
Xpand types are referred to as the metamodel. Hence we will use meta-
model when describing the DPF Xpand type mapping. When referring to
the Ecore metamodel in which DPF is specified, we will describe it as DPF
Ecore metamodel.

4.1 Development Process

Development Methodology

This project has chosen to use Agile development methodologies. The method-
ology chosen for this project is Extreme Programming (XP), although follow-
ing it completely by the book has not been possible. XP was created by Kent
Beck [5] which is one of the pioneers in the Agile movement [51]. The rea-
son for choosing XP over other agile methodologies is that it is tought in the
MOD251 class at Bergen University College. There are a few constraints
which hindered following XP properly; the project had no clearly defined
requirements, lack of time and no one else working on the same problem
(pair-programming).

In the development phase of the project, the aim was to deliver working
software every two weeks coinciding with DPF project meetings. The meet-
ings gave a chance to review what had been done, and the focus area for
the next iteration.

43

CHAPTER 4. DESIGN AND DEVELOPMENT 44

Coding Convention

XP dictates that one should use a predefined coding convention before start-
ing the development. Such standards aim to result in code that is consistent
from developer to developer. It defines how the code looks, but can also in-
clude guidelines on which patterns to use and avoid. Although this project
was developed by one developer, it needs to be maintained by someone else
in the future.

The code convention used in this project is Eclipse Naming Conven-
tions [15]. This convention defines how Eclipse specific elements should be
named (e.g. plug-ins and package names). The code convention in general
uses Oracle’s own guidelines [28]. The reason for choosing these conven-
tions are that the DPF Editor itself uses them throughout, as well as beeing
de-facto standard in the Java ecosystem. Having a completely consistent
codebase will improve readability and thus make it easier for new project
participants to get started.

Tools

The development process has been aided by different tools to create an
environment which enhances productivity and provides structure. An im-
portant tool, even when programming alone, is a bug tracker. Using a bug
tracker helps structuring ideas, as well as keeping track of defects. The tool
chosen for this task was Trac [20], a lightweight Python based bug tracker
with wiki functionality, integration with version control systems (VCS) and
the possibility of creating milestones from feature requests and bugs. Along
with Trac, Mercurial [34] was chosen as the VCS.

The development process was aided by the Eclipse Modeling Tools (Eclipse
Java Development Tools with modelling components), using the latest ver-
sion Indigo (3.7) [16]. The metamodel is based on the latest released Xpand
SDK (1.1.1) which can be found in the modelling components installer inside
Eclipse. Logging is used throughout the project for debugging purposes.
The logging facility used is called Apache Log4j [3].

4.2 Project Overview

Naming Components

This project uses the same naming conventions which the DPF Editor code
base uses. This means all packages starts with no.hib.dpf to denote it is a
part of the DPF project. As the sub-project name, codegen is chosen. In time
there might be other code generation solutions based on other frameworks
than Xpand, and it is suitable to put such projects under the same name.
Furthermore, as a component name, xpand is chosen. This is to denote

CHAPTER 4. DESIGN AND DEVELOPMENT 45

that the particular solution is based on Xpand. metamodel is chosen as sub-
component name following the convention used in the Xpand project.

The following plug-in projects are defined:

no.hib.dpf.codegen.xpand.metamodel

no.hib.dpf.codegen.xpand.metamodel.test

no.hib.dpf.codegen.xpand.metamodel.ui

4.3 Problem Description

As discussed in section 3.5, the DPF Editor is in need for a general solution
to creating code generators. Using regular template engines will result in a
code generator that would not convey the domain concepts of a DSML. An
ideal solution would have the following traits:

Clear expression of domain concepts
The concepts of the DSML should form the basis for the constructs
used in creating templates.

Integration with Eclipse
Editor support is an important feature which makes the template cre-
ation process more user-friendly and intuitive. Features like template
debugging and profiling are features which also improves the user ex-
perience with the tool.

Standalone generator
A generator which does not have to many dependencies are more
portable and reusable. With dependencies directly on Eclipse, one
would make the solution hard to use in other contexts.

These goals are more or less already achieved in Acceleo and Xpand, but
only for the predefined model types which are EMF, UML2 and XSD. This
chapter will describe a solution that facilitates the use of DPF models in a
custom Xpand metamodel.

Listing 4.4 shows an example where we use the DPF Ecore metamodel
with the EMF metamodel. For each DEFINE block in the templates we need
to iterate over all nodes of the DPF model, and not the particular collection
of nodes conforming to a metatype. This example shows the creation of Java
get methods from a DSML which contains a DomainClass entity. What we
want to achieve is a DEFINE block where we iterate over only the nodes that
conforms to the DomainClass metatype.

CHAPTER 4. DESIGN AND DEVELOPMENT 46

«DEFINE gettersAndSetters FOR core::Node»
«IF this.getTypeName() != "DomainClass"»

public «this.getTypeName()» «getter(this)»() {
return «this.name.toFirstLower()»;

}
«ELSE»

public «this.name.toFirstUpper()» «getter(this)»() {
return «this.name.toFirstLower()»;

}
«ENDIF»

«ENDDEFINE»

Listing 4.1: An example of a Xpand template using the DPF Ecore metamodel as basis.

4.4 Metamodels in Xpand

The introduction of this chapter mentions that metamodels in Xpand are a
mapping from types in an actual model language (like Ecore) to the Xpand
type system. This naming is somewhat confusing, but one can think of it as a
metamodel for Xpand’s understanding of a model. The metamodel dictates
how the input model should be mapped to the Xpand type system, and what
kind of mapping this is.

As stated in section 3.7, Xpand supports a number of predefined meta-
models, namely UML2, EMF, XSD and Java beans. Besides these, we have
the built-in Xpand types which also can be regarded as a metamodel. In a
MWE workflow (from now referred to as workflow, see 3.7) one can take ad-
vantage of multiple metamodels at the same time, making each metamodel
handle different aspects of the model.

An important note is that the order of the metamodels is crucial. As an
example we can define a workflow which uses three different metamodels
(from the Xpand documentation [54]): Let us assume that our model ele-
ment is an instance of the Java type org.eclipse.emf.ecore.EObject and it is
a dynamic instance of an EMF EClass Car.

• Built-in metamodel (always first)

• Java beans metamodel

• EMF metamodel

If we want to match Car against EObject in the EMF metamodel we bump
into a problem: the first match we get is from the built-in metamodel where
we get the Xpand type Object. This is now our best-fit as every metatype
has to extend Object. We then proceed to the Java beans metamodel which
will return a org::eclipse::emf::ecore::EObject which is a specialized
version of Object. The EMF metamodel would have returned Car, but was
unable as we got a match before the metamodel was queried. This example
illustrates how important the proper order of metamodels is. If we had

CHAPTER 4. DESIGN AND DEVELOPMENT 47

changed the order of the Java beans metamodel and EMF metamodel, the
proper value would have been resolved. Note that using e.g. a UML2 and
EMF metamodel to handle different parts of a model is a rare scenario. The
example shown is relevant because most metamodels take advantage of the
JavaBeans metamodel to provide functionality in a Java class without the
need for any hand coding.

Figure 4.1 shows how Xpand works in principle. The figure shows how
the DSML initializes one or more metamodels which creates custom Xpand
types (henceforth referred to as types). More specifically, the DSML are
interpreted at runtime by Xpand and mapped to types defined in the meta-
model. When the workflow is executed, Xpand will parse and validate the
templates, this is done with the help from the metamodel which decides
which types should be applicable where. When the code generation phase
starts, Xpand will match a defined input model against the template. This is
done through calls against the metamodel as well.

Target Code

DSML

MODEL

UML2 XSD DPFECORE

METAMODELS

TYPE SYSTEM

TEMPLATE

Figure 4.1: Figure shows how the Xpand metamodels work.

A metamodel in Xpand must implement the MetaModel interface. The
most important methods that needs implementing are the following:

getKnownTypes() Returns a set of types which represents all of the types
the system know of.

getType(Object type) Returns a corresponding type which the parame-
ter object is matched against. The objects which is matched against
getType are the model objects from either the DSML or instance model.
We have to check the object’s DPF type to decide how to handle it us-
ing the Java operator instanceof.

CHAPTER 4. DESIGN AND DEVELOPMENT 48

getTypeForName(String typeName) When processing a template, there are
type identifiers in the different statements. An example of this is:

«DEFINE test FOR my::namespace::StateType»

The type identifier my::namespace::StateType would be queried against
the metamodel to retrieve its designated type, or create a new type if
it do not exist.

getNamespaces() Returns a set of strings which defines what namespaces
the metamodel should handle.

4.4.1 The Xpand Type System

The purpose of the type system is to create a common representation of
the input models, which can be used as a basis for creating tooling. I.e.
rather than creating specialized solutions for a particular model type, we
have a general "model" to adhere to. Creating types is also a way to extend
the existing functionality in a model; the type system is a reflection1 layer
which can be extended with the implementation of metamodels. A type in
Xpand contains a name, properties and operations, as well as information
about inheritance. The type system in Xpand provides access to types based
on the metamodels which are used.

Names have the option of using namespaces, which are delimited using
"::". In the EMF metamodel, the package name(s) in a model is used as
the namespace(s). E.g. with the DPF Ecore metamodel one would have
no::hib::dpf::core as the namespace prefix to a type. When using these
types in the templates one can import the namespace so that the namespace
prefix can be omitted.

When creating a metamodel for Xpand, the types may contain primitives,
like string, integer or floats. These types can be wrapped in a tailored solu-
tion, e.g. creating a type for floats with operations focused on a particular
domain like finance. Often the existing functionality is the best fit to han-
dle primitives as Xpand contains additional functionality for the primitives
string, boolean, real and integer. The string class in particular provides
methods that is useful in a code generation context, like the "+" operator
for string concatenation, regular expressions and more. In addition to the
primitives, Xpand has defined a few collection types: Collection, List and
Set which corresponds to their Java counterpart (java.util.*). To imple-
ment a general approach for the collection types, Xpand uses the concept
of parameterized types2.

As mentioned a Xpand type contains properties and operations based on
reflection. Along with static properties, they are what is called features.

1Reflection is the process of dynamically load classes and functionality at runtime. [26]
2A parameterized type in Xpand is a type which has an inner type. The inner type defines

what type a collection can contain and must be a Xpand type.

CHAPTER 4. DESIGN AND DEVELOPMENT 49

The features are defined as following:

Attribute
An attribute contains a name and a return value which is another type.

Operation
An operation is structurally identical to Attributes with the addition of
parameters.

Static Property
A static property provides the same functionality as enums or con-
stants. It has no parameters.

In Ecore, every attribute can have a specified type (like EString), and
the EClasses can inherit a super-type. When mapping types which have its
foundation in a Java class, we can take advantage of the JavaBeans meta-
model for providing the functionality it contains. Instead of defining the
JavaBeans metamodel within the workflow, it is possible to use it directly
in our own metamodel. E.g. the EMF metamodel relies on the JavaBeans
metamodel for handling types which is external to the Ecore model.

4.5 DPF Xpand Metamodel

As the problem description (4.3) suggests, using the DPF Ecore with the
Xpand EMF metamodel will result in a tedious and unintuitive solution that
does not convey the domain concepts of a DSML. As the predefined meta-
models do, the DPF metamodel must implement the MetaModel interface.
The DPF metamodel behaves like any other metamodel, and can be used
in the same manner. Although not properly tested, the metamodel should
work seamlessly with all of the predefined components in Xpand.

4.5.1 Considered Approaches

Before initiating the work on creating a Xpand metamodel, a different ap-
proach was considered due to the high learning curve of Xpand’s internals.
Since EMF is supported "out of the box", the first thought was to create a
model-to-model transformation from DPF to EMF. This approach is valid, but
as we discussed in section 3.7 it would restrict the functionality provided to
what was defined in the EMF metamodel. A model-to-model transformation
from DPF to EMF is probably work worth a master’s thesis by itself, and
was thus not considered to be a viable solution.

Another approach considered (see figure 4.2) was a simplified model-
to-model transformation where an Ecore model was built programmatically
from a DPF specification focusing on the basic constructs like nodes and
arrows. To make this work, we would have to create an (dynamic) Ecore

CHAPTER 4. DESIGN AND DEVELOPMENT 50

model on the fly and generate a .ecore file which would provide editor sup-
port. To make things worse, dynamic EMF does not support creating custom
operations like regular EMF does. The biggest problem with this approach
however, is that the operations which would be provided through Xpand,
would be the generic EMF API. This means we would be back to compar-
ing EClass entities with their name to find a specific DSML node and thus
provide no benefit at all.

DPF model

Transformation Engine
Dynamic EMF

Figure 4.2: Figure shows the idea behind one of the considered solutions.

4.5.2 Packages

The basic structure of the no.hib.dpf.codegen.xpand.metamodel project
contains four different packages.

no.hib.dpf.codegen.xpand.metamodel
Contains the metamodel class which perform and store all the map-
pings towards our custom types. It also contains an interface which
defines the names of the entities in DPF (e.g. Node, Constraint, Arrow
etc.).

no.hib.dpf.codegen.xpand.metamodel.typesystem
The type system package contains utility functionality which are used
by the type classes and other parts of the system.

no.hib.dpf.codegen.xpand.metamodel.typesystem.types
This subpackage contains classes for all the custom types. This pack-
age is internal, and is not exposed to other plug-ins.

no.hib.dpf.codegen.xpand.metamodel.workflow
This package contains the workflow component DpfReader which han-
dles the initialization of the metamodel, i.e. it loads the DSML’s and
the model’s specification.

CHAPTER 4. DESIGN AND DEVELOPMENT 51

4.5.3 Structure of the Metamodel

A way of looking at the metamodel is a black box where you insert the DSML
and its instance, and are then able to query it with objects or names which
then returns a corresponding type.

DpfMetamodel

Internal Model

Internal Metamodel

getType()

getTypeForName()

DPF DSML objects -> Xpand types

Ecore Helper

DPF object ID -> Xpand type collection

DPF object name -> Xpand types

DPF instance model objects -> Xpand types

getTypeForETypedElement()

getTypeForEClassifier()

Type

Type

Figure 4.3: Figure shows the internals of a DPF metamodel.

The metamodel class has three internal classes with their own responsi-
bility. Figure 4.3 shows a internal metamodel, an internal model and what
is called the Ecore helper. The predefined metamodels in Xpand usually
match an object to its metaobject and return that, but in DPF we have a
lot of idiosyncrasies which makes it easier to have a representation of the
model as well. An important observation is that every call to the metamodel
will ultimately go through getTypeForName, and return a result from the
internal metamodel or the internal model.

There is no validation of the models implemented in the metamodel.
The DPF Editor enforce the consistency and validity of the DSML’s typing
through checking for graph homomorphisms [4]. Even though we reflect
both the DSML and instance model in the metamodel, we do not check for
graph homomorphisms between them. When a DSML or instance model
is used within the metamodel it is assumed to be valid, both concerning
constraints and typing.

CHAPTER 4. DESIGN AND DEVELOPMENT 52

Internal Metamodel

The internal metamodel represents the DPF DSML and its concepts. When
the method addDpfMetaModel(Specification) is called, the Specification
object representing the DSML is iterated over, and each DPF type gets
matched through a map structure called metaModelCache. This particular
mapping is mapped with the DPF model objects from the DSML as keys,
and a corresponding type as value. If the type does not exist, a new one
will be created with the DSML entity’s name as name. In addition to the
DSML types, we add two "dummy types", namely Node and Arrow for rea-
sons explained in the next section. Each DSML entity gets stored with its
namespace prefixed, although it is hardcoded for DPF models at this point
(see 4.7).

Internal metamodel mapping
Key (DPF model objects) -> Value (DPF Xpand Type)

content

articles

Arrow

Attribute

name

birthdate

Node

Type

Author

DomainClass

String

Date

Article

Reference

M₃

M₂

M₁

-name: DomainClass

NodeType

-name: Type

NodeType

-name: Reference

ArrowType

-name: Attribute

ArrowType

Node: DomainClass

Node: Type

Arrow: Reference

Arrow: Attribute

Figure 4.4: Figure shows a simple mapping between a DSML and Xpand types.

Figure 4.4 shows how a simple DSML is mapped to corresponding types
within the type system.

Internal Model

An internal model represents the DPF instance model of the DSML. This
class is initiated when addDpfModel(Specification) is called. As with the
internal metamodel, we create a object to type mapping, but this time with
the instance DPF specification as the basis. The reason for mapping the
instance model is that we need to retrieve the correct object when travers-
ing the graph. When chaining method calls, we would have returned the

CHAPTER 4. DESIGN AND DEVELOPMENT 53

DSMLs objects rather than the instance, thus looking up the wrong objects
in the metamodel.

Next we create a DPF type ID3 to list of DPF objects mapping. The list
of objects is built using all the objects in the instance model which has the
same metatype (ID). This is not necessary, but retrieving all instances of a
DSML type is a common operation, and a collection simplifies that process.

The last and most important mapping is the type name to type mapping,
which is used for resolving every query to the metamodel. This mapping
points to both the internal metamodel mapping and the internal model’s
DPF object to type mapping. As figure 4.3 shows, the Ecore helper also uses
the name to type mapping. Using names to identify objects is unfortunate
due to its ambiguity, but necessary as all type definitions in the templates
are simple names. An example issue is when nodes and arrows, or more
than one node or arrow has the same name: which type is the correct one?
The only way to deal with this is to check if the object retrieved from a
mapping corresponds with what is queried. The type names are stored with
their respective namespace prefix.

Ecore Helper

For convenience purposes we take advantage of the functionality specified
in the DPF Ecore metamodel. From the types created for the metamodel this
helper class gets called to resolve attributes and operations on the EClass
in which any DSML/model type is an instance of. It is very useful to get
operations like get/setName or get/setGraph for "free", i.e. without having
to define them manually in the types. The names of getters are shortened
to "name" instead of "getName" for convenience.

4.5.4 Type System

The types created for our metamodel reflects the types which DPF defines.
The purpose of the types is to encapsulate the model object and expose its
functionality through the Xpand type system. As stated in section 4.4.1 we
can also define our own functionality through the Xpand API. This proves
to be quite useful, as the DPF API is not tailored for graph traversal and
code generation. As an example, we can take outgoing arrows from a node
in the DPF Ecore metamodel where the only possibility is to retrieve all
the outgoing arrows. When writing templates it is convenient to not iterate
over all the arrows and decide its type within the template itself, as this
would create a lot of complexity. A possible solution could be to create
an extension that built collections of arrows upon generator execution, but
this would be a lot of manual labour and unnecessary because it can be
automated. This is where our custom types come to the rescue; we simply

3Each node, arrow, constraint and graph has a unique id within the Specification object.

CHAPTER 4. DESIGN AND DEVELOPMENT 54

define new methods that can be used within the template environment. This
particular example problem is tackled by creating a mapping from a DSML
type ID to a collection of instance model nodes that has the same metatype
ID (see previous section).

«interface»
Type

AbstractTypeImpl

NodeType ArrowType ConstraintType PredicateTypeGraphTypeSpecificationType

ListTypeImpl

CollectionTypeImplDummyType

«interface»
ParameterizedType

TypeHelper

«interface»
Callable

FeatureImpl

OperationImpl PropertyImpl

Figure 4.5: Figure shows the type system in the DPF Xpand metamodel.

Figure 4.5 shows an overview of the DPF metamodel’s typesystem. For
each DPF concept, we have a corresponding type. All of the types inher-
its AbstractTypeImpl which in its turn implements the Type interface. We
also see that the CollectionTypeImpl implements the ParameterizedType
interface which defines an inner type of the collection, which is how param-
eterized types are declared in Xpand. As in the java.util package, the list

CHAPTER 4. DESIGN AND DEVELOPMENT 55

and set is a specialized case of a collection.

We also see that we have referenced attributes, operations and static
properties from our types. AbstractTypeImpl does caching of all the fea-
tures within a type automatically. The TypeHelper class is responsible for
creating all the Ecore features for each type based on the DPF type. I.e. an
instance of Arrow will provide getters and setters for names, retrieving its
graph, target and source etc.

Not all of the custom types provide any alterations to their correspond-
ing DPF entity’s type. ConstraintType, PredicateType and SpecificationType
are only defined through the functionality in the DPF Ecore metamodel.
Due to recent API changes there has not been a priority to define custom
behaviour as the DPF Ecore functionality is satisfactory.

+getContributedFeatures()
+createGettersForOutgoingArrows()
+getSuperTypes()
+isInstance() : Boolean

-metamodel: DpfMetamodel
-metaType: Type

NodeType

-name : String
-propertyCache: Cache
-operationsCache: Cache

AbstractTypeImpl

Figure 4.6: A class diagram showing a NodeType and its parent. This graphic only shows
selected entities within the classes for simplicity.

Figure 4.6 represents a the "anatomy" of a NodeType. All of the spec-
ified types for the DPF metamodel inherits AbstractTypeImpl. We see
AbstractTypeImpl’s data fields, which contains Cache4 objects that store all
the features of the metamodel. That is, when the method getAllFeatures()
is called (which is defined through the Xpand interface Type), the class calls
getContributedFeatures() which is an abstract method implemented in
the subclass. This is an example of the template pattern [33].

The Xpand type system supports inheritance within the types. The Java
objects which represent the Xpand types has no inheritance in between each
other. This inheritance is defined through the method getSuperTypes(),
where a type returns a set of Xpand types which the particular type should
inherit. In the DPF metamodel each type from the model instance inher-
its its metatypes’s type. Figure 4.5 shows a type called DummyType, which
is a type that only contains its name, no operations and attributes are de-
fined. The reason for implementing this type is to use it as supertypes for

4A Cache object is a wrapper around java.util.HashMap with some additional functionality.

CHAPTER 4. DESIGN AND DEVELOPMENT 56

the DSML’s and instance model’s types, for the purpose of defining general
methods on e.g. nodes like getOutgoingArrows. Although that particu-
lar method is implemented through the DPF Ecore, it will not work due
to the DSML and instance model types beeing different from eachother
(e.g. a NodeType called Process is not the same type as a NodeType called
Control).

The createGettersForOutgoingArrows() is a method which returns cus-
tom operations for the node. In short, the method creates a "get" method
for each type of arrows which is outgoing from the node. This is the imple-
mentation of the scenario mentioned in the beginning of this section.

4.5.5 Reader and Workflow

For the metamodel to work in a MWE workflow, we need a reader compo-
nent which initates the metamodel with data. In the DPF metamodel’s case,
we want the reader to load both a DSML and model. A component in Xpand
is a class which implements the interface WorkflowComponent.

DPF Reader Component

Target Code

Metamodel Types

DPF Xpand Metamodel

1

DSML

Instance Model

DSML Instance

Metamodel

2
3

Generator Component

4

Figure 4.7: Figure shows how the Xpand DPF metamodel works in a workflow.

Figure 4.7 shows how the workflow proceeds from start to end. This
visualization only contains two components, the DPF Reader and the Xpand
Generator component.

1. The first step in a workflow is to declare properties. We assign a name
to e.g. a path or value to simplify the appearance of the workflow file.
This is optional as you can use paths directly in the components, the
assigned ID is merely an alias. What is important is instantiating the
metamodel and assigning it an ID, making it available across compo-
nents within the workflow. See the three first lines of listing 4.2 for
example.

CHAPTER 4. DESIGN AND DEVELOPMENT 57

2. The DPF Reader component takes two paths or URIs to the serialized
versions of both a DPF DSML and its instance. The purpose of the
reader is to initialize the metamodel. The component can be declared
more than once with different metamodels and DSMLs.

3. This step illustrates the mapping from DPF types (from both the DSML
and instance model) to Xpand types within the metamodel.

4. The generator component shows how the Xpand generator utilizes the
metamodel by querying it for suitable types based on type definitions
in the template, as well as the input model from the reader.

<property name="dpf_model" value="/path/to/resource/model.xmi" />
<property name="dpf_metamodel" value="/path/to/resource/metamodel.xmi"

/>
<bean id="mm_dpf" class="no.hib.dpf.codegen.xpand.metamodel.

DpfMetamodel"/>

<component class="no.hib.dpf.codegen.xpand.metamodel.workflow.
DpfReader">

<dpfMetaModel value="${dpf_metamodel}"/>
<dpfModel value="${dpf_model}" />

<metaModel idRef="mm_dpf"/>
<modelSlot value="dpf" />

</component>

Listing 4.2: A MWE workflow that depicts the DPF Reader component.

Listing 4.2 shows the DPF Reader component with properties declared
for clarity. As previously mentioned, the reader component is needed for ini-
tializing the metamodel with the data from models. This happens through
the <dpfMetaModel> and <dpfModel> tags. The <metaModel> specifies the
DPF Xpand metamodel. Internally, we load the specified XMI files with the
DPF Core API and call addDpfMetaModel and addDpfModel on the meta-
model. The <modelSlot> tag stores the Specification object of the in-
stance model for use in the <expand> statement in the generator component
(see listing 3.9).

CHAPTER 4. DESIGN AND DEVELOPMENT 58

4.5.6 Dependencies

Using a framework like Xpand instead of a simpler solution, often entails
some dependencies. The goal of creating a standalone code generation fa-
cility is somewhat hard to achieve. If we look past the dependencies of the
Xpand framework, the no.hib.dpf.codegen.xpand.metamodel contains a
very limited amount of dependencies:

no.hib.dpf.core The DPF core API.

org.eclipse.emf.mwe.core Used for the workflow specific code, i.e. the
DPF Reader component.

org.eclipse.xtend Contains the type system specific functionality.

org.apache.log4j The logging facility used for debug statements within
the metamodel and its types.

In a language workbench setting, the generators will always be used
with the DSML. Using the Xpand framework for the code generation is then
not a problem because the dependencies are fulfilled through the language
workbench. A scenario could be that one would want to use Xpand without
Eclipse; this is possible as Xpand can run standalone.

An interesting scenario could be where you did not want the whole lan-
guage workbench tooling, but a lightweight textual solution based on e.g.
Florian Mantz’ textual DPF tool. In such a scenario it could be interesting
to generate a code generator for a DSML that takes textual input (instance
models) and outputs code. I.e. generate a standalone generator for a par-
ticular DSML. This is called a generator generator [29].

4.5.7 Testing the Metamodel

Creating tests for the code generation tool is important, as there is a lot
of corner cases that is hard to predict when creating a metamodel. Un-
fortunately, test-driven development (TDD) was not an option because of
time constraints. Another problem is the lack of expert domain knowledge;
learning the ins and outs of DPF was not required to create a usable so-
lution. With the adoption of the tool, identifying corner cases will be a lot
easier. The most basic tests as loading models into the Xpand metamodel,
and retrieving a type based on its name can be achieved using plain JUnit
test-cases. When we want to test for a more intricate bug, creating tests
programmatically is a lot of manual labour. A solution to this is creating a
test fixture that can load models, and expect a particular output from the
Xpand framework.

Even if we decide to create a test programmatically we need a model
to operate on. Besides beeing time consuming work, this poses a difficult
problem which needs to be resolved: migration from one model to another.

CHAPTER 4. DESIGN AND DEVELOPMENT 59

Every time we see a change in the DPF Ecore metamodel, all models created
previously are unusable. What is needed is a migration strategy when these
changes occur, so that the model based tests will not break on API change.

4.5.8 Documenting the Metamodel

As a lot of projects in the Eclipse ecosystem, the Xpand framework has lim-
ited documentation. There exists a user guide which covers most aspects of
the tools, although some are more explained than others. Developer docu-
mentation is next to non-existing and the code base is almost without any
comments. This makes the learning curve very steep when trying to make
sense of how Xpand works. The best bet of getting an explanation for any
concept or piece of code is through the Eclipse Community Forums [14].
The response on the M2T forum are excellent, with very helpful represen-
tatives from Itemis [27].

To mitigate the poor existing documentation, the project will be well
documented. Hopefully, this project will serve as a foundation for further
work, and must thus have as low threshold for learning the code as possi-
ble. Besides this report, the final code will be properly commented, with an
example implemented (see chapter 5 to demonstrate the tool in use. The
metamodel will especially be well commented, as the idea behind it might
be hard to grasp when diving into the code base.

4.6 Integration with Eclipse

An important aspect of the language workbench is the integrated tooling.
We want an IDE like experience when defining our generators, with the best
possible support and tools for writing templates. Xpand provides rich editor
support through the metamodel, but it is not ready for use until we have
created a metamodel contributor.

4.6.1 Packages

no.hib.dpf.codegen.xpand.ui
Root package which contains the plug-in activator and DpfMetaModelContributor
(see next section).

no.hib.dpf.codegen.xpand.ui.nature
Contains support for a project nature. A nature is a project-type spe-
cific environment, which can be used to load project type specific
functionality like a specific editor or a property dialog. There is also
support for project specific properties (workspace scope) through a
generic get/set property class.

CHAPTER 4. DESIGN AND DEVELOPMENT 60

no.hib.dpf.codegen.xpand.ui.wizards
The wizards package provides UI classes for the project creation wiz-
ard. It also contains a XML parser which parses the workflow XML
files and gives the option to alter attributes.

4.6.2 Editor Support

Editor support for metamodels are not quite supported out of the box. The
MetamodelContributor interface needs to be implemented and then regis-
tered through an extension point5 within Xpand. The metamodel contrib-
utor has one objective; return the DSMLs which should be associated with
the editor. The editor support in Xpand provides syntax checking and a
dynamic code assistance which provides auto completion and suggestions
when writing templates.

Get
Specification
from store

Get Meta Model for Project

Create Meta
Model from
Specification

Return
Meta

Model

Return
Meta

Model

Detect If Meta Model existsDpfMetaModelContributor

DpfUIPlugin

Model Exists
Return
Meta

Model

Return
Meta

Model

Model Does Not Exist

Store Meta
Model in

ContributorXpand
Request for
Metamodel

Xpand
Request for
Metamodel

Figure 4.8: Figure shows the process of retrieving a metamodel for a project.

Figure 4.8 describes the process of retrieving a metamodel. Xpand will
request a metamodel for a project, in which the metamodel contributor
will try to look up if it has a metamodel associated with the requested
project or not. If not, the metamodel contributor will request that the
DpfResourceDeltaVisitor scans the workspace to retrieve any specifica-
tions found in either a .prefs file, or a workflow file. The specification found
will then be loaded using EMF, and returned to the metamodel contributor
where a metamodel object is created with the returned specification as ar-
gument. The metamodel contributor then stores the metamodel with the

5An extension point is provided by a plug-in for enabling other plug-ins to contribute func-
tionality.

CHAPTER 4. DESIGN AND DEVELOPMENT 61

requested project associated for later use and returns the metamodel.

The Eclipse integration and the Xpand generator component both rely
heavily on the DPF metamodel. When creating a new DPF Generator Project
we specify the location of our DSML through the wizard or the workflow,
which then loads the DSML into a metamodel that is associated with the
current project. This metamodel is never used for generating code, but only
for providing the DSML concepts and its types to the template editor. When
generating code, the metamodel and types are instantiated in the workflow,
and only exists until the workflow is finished. The template editor’s meta-
model never has an instance model associated with it, as it is irrelevant.

4.6.3 Project Structure

For the users convenience, we generate a project structure which is ready
for use. Listing 4.3 shows the project structure which is generated for the
user. The src and src-gen are source code folders where src-gen will con-
tain any generated code. This path is not hardcoded, and can be customized
through the workflow file (see listing 3.9). The project is built on top of a
Xpand project. This means the project is an Eclipse plug-in which can be
used in the same manner as any other Eclipse plug-in project, and we get all
the correct dependencies for a Xpand project through the MANIFEST.MF file.
The .project file contains details about the project, such as which natures
(see next subsection) are activated. This file is essential to let Eclipse know
what kind of project we are dealing with. Lastly the .settings folder con-
tains two preference files which are read when the project is recognized as
both an Xpand project, and a DPF Generator project. The files define which
metamodel is active on the project and where to find the DSML.

no.hib.dpf.test/
|-- .settings/
| |-- no.hib.dpf.codegen.xpand.ui.prefs
| |-- org.eclipse.xtend.shared.ui.prefs
|-- META-INF/
| |-- MANIFEST.MF
|-- src/
| |-- template/
| | |-- templ.xpt
| |-- workflow/
| |-- workflow.mwe
|-- src-gen/
|-- .project

Listing 4.3: Listing shows the generated project structure for a DPF Generator Project

A template and workflow file are also added. The workflow file contains
a simple standard setup, with the DPF Reader component properly defined.

CHAPTER 4. DESIGN AND DEVELOPMENT 62

The template file contains the "entry" definition of a template, more pre-
cisely a DEFINE block for a DPF specification.

4.6.4 Project Nature

In Eclipse the concept of a project nature is to indicate that your project
are of a certain type, which uses certain tools. The nature can configure
the UI by contributing menu selections, views or any other Eclipse artefact.
Natures can also handle project specific properties.

In the earlier iterations of the codebase, all paths to models was stored in
project specific settings. Unfortunately these settings was also workspace
specific, which means that if a user checked his project into a VCS and
another checked it out, the second user would not have access to the first
users settings as to where the models was stored. This problem is avoided
by writing a .prefs file in the .settings folder in the project.

This means that the project nature facility in the plug-in is now largely
unused, besides always being enabled for new DPF Generator projects. The
reason for leaving the code in the plug-in is that it will almost certainly be
used in the future if the tool gets further developed.

4.7 Shortcomings in the Tool

Namespaces and Multiple DSMLs

In its current state namespaces are not supported. The prefix dpf is hard-
coded and used for all types within the metamodel. This poses a problem
when one wants to have more than one DSML in the project. It is also not
possible to have multiple instance models on one DSML. A solution to this is
to run the generator workflow for each DSML and corresponding instance.

This feature was a low priority in this project, and was unfortunately not
finished. It might be a usability improvement to manage multiple DSMLs
in a single workflow, as well as multiple DSML instances. Multiple DSML
instances on a single language requires the implementation of namespaces,
as name collisions can occur, and thus returning the wrong node or arrow.

An implementation of this feature is relatively easy. One suggestion is to
prefix every entity from the DSML/model with a custom name. Another solu-
tion could be to store a map of InternalMetamodel’s and InternalModel’s
with the prefix as key.

Decoupling from no.hib.dpf.core

At this point, there is a very tight coupling between the tool and no.hib.dpf.core.
Although a natural dependency, it is problematic that whenever the DPF API

CHAPTER 4. DESIGN AND DEVELOPMENT 63

is changed, the metamodel might break and its types needs to be updated
manually. The nature of the DPF project, where each student works on a
separate aspect of the tool, makes it desirable to have each "module" as self
sustainable as possible. Learning a new codebase from scratch is a lot of
work which can be alleviated by good self-documenting and annotated code,
but it is still extra work.

A solution to this problem can be to create an API, beyond the one gen-
erated from the DPF Ecore, which is maintained by whoever is responsible
for no.hib.dpf.core. Tolvanen and Kelly [29] mentions data-based and
message-based APIs to decouple generators from models. A data-based API
is basically what we have today, an API which returns parts of the actual
model, or a copy. To avoid breaking the API one should mark obsolete meth-
ods and classes as @Deprecated rather than removing them. The message-
based API is an approach where only proxies for the model are sent back
and forth. This means you operate on proxy objects that resolves to a prim-
itive like string or integer at its most basic form.

Test Coverage

The current test coverage of the tool is poor. The metamodel and type
classes are the only components which have some tests written. The cover-
age for these components are very limited as well. Besides the lack of time,
the issue addressed in section 4.5.7 is the main reason for not creating more
tests for the metamodel itself. Other components like the workflow reader
and UI related code can be tested programmatically.

Implementing Constraints and Predicates Using Types

When this tool was developed, the signature file (see section 2.6) was hard-
coded along with its predicates. It was not a priority to do anything about
these types, as the Ecore helper within our metamodel exposed the needed
functionality. The latest version of DPF Editor gives the opportunity to de-
fine custom predicates which opens up new possibilities. There was unfor-
tunately no time to implement this.

Chapter 5 will present a way to simplify the handling of constraints using
extensions.

4.8 Feature Overview

We wrap up with an overview of what has been achieved through the devel-
opment in this project:

Xpand metamodel
The Xpand metamodel for DPF is the core functionality that lies at the

CHAPTER 4. DESIGN AND DEVELOPMENT 64

heart of what has been developed in this project. The metamodel is a
mapping from the DPF model types to our custom Xpand types. The
types exists only in the metamodel, and is available through queries.

Type system
We have defined a type system which Xpand can understand for each
of the modelling constructs in DPF. This enables us to easily define
new functionality for each modelling constructs, such as DSML spe-
cific getters and setters, or utilizing the functionality already defined
in the DPF Ecore metamodel.

Workflow integration
With the implementation of the DPF Reader component, we have in-
tegrated the metamodel with the Modeling Workflow Engine (MWE).
This results in a seamless use of the metamodel between the different
components that Xpand offers.

Eclipse integration
With the implementation of a metamodel contributor, we can take ad-
vantage of all the features which Xpand has to offer. We get editor sup-
port for template editing with Xpand, extension editing with Xtend and
constraints checking with Check. The editor support contains code
completion, syntax coloring, error highlighting, source navigation and
refactoring.

Project environment
As part of the Eclipse integration, we have implemented a project envi-
ronment that defines a wizard for generating a project structure suit-
able for code generation. There is also a facilitated a project nature.

The time invested in creating this functionality is time well spent, as
using any of the alternative approaches (section 4.5.1) would have been an
inferior solution technologically.

Lastly, let us take a look at our problem description in section 4.3. We
stated that an ideal solution would solve a few requirements:

Clear expression of domain concepts
Through the interpreted nature of Xpand, we are able to create an
environment for code generation based on the concepts of a DSML
rather than an instance model.

Integration with Eclipse
The metamodel and the metamodel contributor give us access to all
the features Xpand has to offer.

Standalone generator
This requirement is the one which is not completely fulfilled. A frame-
work with the size of Xpand is bound to have some dependencies. The
bright side is that a generator can be executed without Eclipse, with
only Xpand, log4j and no.hib.dpf.core as dependencies.

Chapter 5

Demonstrating the Tool

This chapter will demonstrate how to use the Xpand framework together
with the DPF metamodel and its Eclipse integration. We will generate code
for the Play [45] web framework based on a simple DSML. Generating code
for a web framework is an excellent use case, because of the similar traits
from one application to another.

5.1 Components/Packages

no.hib.dpf.codegen.examples.dpfplay
Contains the generator implementation.

no.hib.dpf.codegen.examples.dpfplay.ui
This plug-in contains the Eclipse integration for the generator.

The component name chosen is codegen like the DPF Xpand metamodel.
The sub component is called examples, as a common subcomponent for all
code generation related example projects. The name chosen for the project
is "dpfplay".

NOTE: The plug-ins are part of the reference example project.
This chapter will not explain the Eclipse integration found in the
no.hib.dpf.codegen.examples.dpfplay.ui plug-in.

5.2 Choosing a Framework

The following is a short evaluation of the candidates chosen for this tool
demonstration. The criterias used was simple; a modern framework with as

65

CHAPTER 5. DEMONSTRATING THE TOOL 66

little configuration and boilerplate1 code as possible. Most popular frame-
works today is based on the Model View Controller (MVC) pattern, which
give them similar properties. If one defines two web applications in the
same framework, they will most likely share the same structure. This makes
web applications a popular domain for MDE and code generation [53] [30].

The model part of an MVC framework is usually the most generic and
simple to generate code for. Controllers and View vary a lot more in how
they function.

After a short evaluation the Play Framework was chosen. In addition to
fitting the criterias, it is made for Java (and Scala) which was ideal consid-
ering the time left in the project. As we will discover, Play enables us to get
results with very little code.

5.2.1 Lift

Lift [32] is a web framework based on the Scala programming language,
which focuses on security, scalability and ease of use. The framework tries
to fill the same need as other web frameworks such as Ruby-on-Rails and
Spring, but tries to improve on the shortcomings other frameworks exhibits.
Lift follows the MVC pattern to enforce separation of concern; unlike JSP,
Lift does not allow code in the templates. The framework also benefits
from Scala’s Actor model which provides concurrency in a safe and robust
manner.

5.2.2 Django

Django [12] is another web framework based on the MVC paradigm which
uses the Python programming language. Its focus is to hide the boilerplate
code and focus on the functionality. Among the wide range of features you
find Object-Relational Mapping (ORM), caching framework, template en-
gine, a standalone web-server and automatically generated CRUD interface
for your model classes.

5.2.3 Grails

Grails [23] uses the Groovy programming language which is a dynamic lan-
guage running on the JVM. As with Django and Lift, Grails uses the MVC
pattern. Under the hood it uses a lot of the functionality inside Spring, but
stays clear of any XML configuration.

1Boilerplate code is a term for code which appears in many places with little to none alter-
ations.

CHAPTER 5. DEMONSTRATING THE TOOL 67

5.2.4 Play Framework

The Play Framework [45] is a MVC web framework for Java and Scala. It
aims to be a more effective alternative to other Java frameworks like Spring
and Java EE. Play comes with its own runtime that loads code changes di-
rectly into the JVM, and removes the need to restart the application server
each time a change is made. Another notable feature is the template engine,
which uses Groovy as expression language. The result is a concise syntax
with less boilerplate code.

5.3 Problem Description

Creating a working example for the code generation tool is needed to demon-
strate how it works. The process of creating a generator project is simple,
yet it demands some hand coding to create the templates, which are the
most important part. Any UI integration of the generator will need to be
hand coded in the same manner as any other Eclipse plug-in.

Through this chapter we will demonstrate a simple code generator, which
generates simple Java model classes for the Play framework using a simple
DSML. We will utilize Play’s built-in modules to provide a CRUD (Create,
Read, Update, Delete) interface using our generated classes.

This chapter acts as a tutorial on how to use the code generation tool.
The code for this example project can be found at http://dpf.hib.no/
downloads/. It contains a more elaborate example with Eclipse integration
for the generator.

This example project was developed using Eclipse Indigo (modelling
tools bundle) with Xpand and the DPF Xpand metamodel installed. The
version of Play framework used is 1.2.4.

5.4 Creating the Generator

5.4.1 What to Generate

As stated in the previous section, we want to generate simple model classes
for a Play project. The example is very simple, and will not entail the gener-
ation of any behaviour oriented code. We will handle multiplicity constraints
to give an example on how to use them in their current state. In section 3.3
we briefly discuss the creation of a code generator and what is needed for
creating one; mainly a sample input and output to clearly define the gen-
erator’s requirements. The templates in the generator can be regarded as
transformation rules, and it is thus necessary to see what you want to trans-
form and what it should result in.

http://dpf.hib.no/downloads/
http://dpf.hib.no/downloads/

CHAPTER 5. DEMONSTRATING THE TOOL 68

The first thing we need to do is define a DSML for our problem. This
step is not necessarily a part of the code generation activity, as the language
might be pre-defined.

Figure 5.1: Figure depicts a simple DSML for creating domain classes.

Lets go through the DSML step by step:

1. We define three Nodes which have the type names DomainClass, Type
and Package.

2. A DomainClass may have a reference to one or more DomainClasses.
3. A DomainClass can not reference itself. This is enforced by the ir-

reflexive [irr] constraint.
4. A DomainClass has exactly one Package ([1..1] multiplicity constraint).
5. A DomainClass can have zero or more Types associated.

In short, this DSML enables us to create DomainClass nodes that belongs
to a Package. The DomainClass may or may not have any attributes or other
DomainClasses associated with it.

To properly understand how to create our generator, we need to create
a sample input model:

The instance model in figure 5.2 shows an example with nodes Author
and Book which both are typed by DomainClass. Each node has a few at-
tributes shown by the arrows typed by Attribute. There are also a zero-to-
many relation between Author and Book (an author can have zero or more
books), as well as a one-to-many relation from Book to Author (one book can
have many authors).

Now that we have a sample input defined, we can define what we want
to achieve with the generator. This example will create very simple model
classes which forms the foundation in a Play web application.

Listing 5.4.4 shows a draft of how we would like the code to look after
code generation. The seasoned reader might see that we have defined our
data fields as public, rather than private. This is an example of the conve-
nience Play provides through its own runtime; all public fields will have get-

CHAPTER 5. DEMONSTRATING THE TOOL 69

Author.java

package no.hib.dpf.codegen.examples.dpfplay.model;

import java.util.Date;
import java.util.ArrayList;

public class Author {
public String name;
public String email;
public Date birthdate;
public ArrayList<Book> books;

public Author(String name, String email, Date birthdate, ArrayList<
Book> books) {

this.name = name;
this.email = email;
this.birthdate = birthdate;
this.books = books;

}
}

Book.java

package no.hib.dpf.codegen.examples.dpfplay.model;

import java.util.ArrayList;

public class Book {
public String name;
public String isbn;
public ArrayList<Author> authors;

public Book(String name, String email, ArrayList<Author> authors) {
this.name = name;
this.isbn = isbn;
this.authors = authors;

}
}

Listing 5.1: Listing shows a preliminary draft of the code we want to generate.

CHAPTER 5. DEMONSTRATING THE TOOL 70

Figure 5.2: An instance model for the DSML (5.1).

ters and setters generated. Model classes in Play will typically also contain
Java Persistence API (JPA) annotations for the persistence of the models.
These will be added at a later point.

Now that we have defined our DSML, instance model and output sample,
we can start thinking about creating a generator project and define our
templates.

5.4.2 Creating a Generator Project

When selecting the New wizard in Eclipse, we find a new entry under the
DPF category, DPF Generator Project. This is part of the functionality we
defined in the no.hib.dpf.codegen.xpand.ui plug-in.

• Select DPF Generator Project as figure 5.3 shows.

Figure 5.4 shows the DPF Generator Wizard. As shown, there are two
fields in the wizard. The project name is obligatory while the location of
the DSML is optional. As discussed in section 4.6.2, the DSML is needed
to enable the editor support. Even though a DSML is not defined for the
project you create, one can define the location where it is supposed to be.
The DSML will then load upon creation. One can also use the location of
DSMLs in other projects in the workspace. We will leave the metamodel
location blank for now, as we wish specify it later.

• Set project name to no.hib.dpf.codegen.examples.dpfplay.

• Leave metamodel location blank and press "Finish".

CHAPTER 5. DEMONSTRATING THE TOOL 71

Figure 5.3: Eclipse new wizard showing the DPF category with DPF Generator Project.

Figure 5.4: Figure shows the DPF Generator Wizard.

We have now a ready to use project structure (see 4.6.3). As the DSML
location has not been defined, the generated template stub will show an
error as the dpf namespace is not found.

Before proceeding, we want to define the DSML and instance model
using the DPF Editor, so that we can get editor support in the later steps.

• Create a new folder models in our project.

• Inside the models folder, create a new DPF specification with the
name "metamodel".

• Open the specification and define the DSML in figure 5.1.

• Create another DPF specification with the name "author" within the
model folder. Use "metamodel.dpf.xmi" as the typing for the specifi-

CHAPTER 5. DEMONSTRATING THE TOOL 72

cation.

• Open the specifcation and define it using our model from figure 5.2.

5.4.3 Defining the Workflow

With the project structure a workflow is generated, it contains almost ev-
erything that is needed to run it. The generated workflow should look like
so:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<workflow>
<!-- workflow properties -->
<property name="dpf_model" value=""/>
<property name="dpf_metamodel" value=""/>

<property name="src-gen" value="src-gen"/>

<!-- set up EMF, only needed when using URI’s -->
<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">

<platformUri value=".."/>
</bean>

<!-- instantiate metamodel-->
<bean class="no.hib.dpf.codegen.xpand.metamodel.DpfMetamodel" id="

mm_dpf"/>

<!-- DPF component -->
<component class="no.hib.dpf.codegen.xpand.metamodel.workflow.

DpfReader">
<dpfMetaModel value="${dpf_metamodel}"/>
<dpfModel value="${dpf_model}"/>
<metaModel idRef="mm_dpf"/>
<modelSlot value="dpf"/>

</component>

<!-- generate code -->
<component class="org.eclipse.xpand2.Generator">

<metaModel idRef="mm_dpf"/>
<expand value="template::templ::main FOR dpf"/>
<outlet path="${src-gen}">

<postprocessor class="org.eclipse.xpand2.output.
JavaBeautifier"/>

</outlet>
</component>

</workflow>

Listing 5.2: The generated workflow file in a DPF Generator Project

CHAPTER 5. DEMONSTRATING THE TOOL 73

As listing 5.4.4 shows, we get a workflow file with the DPF Reader com-
ponent inserted (see 3.7 for an explanation of a workflow). The only at-
tributes which must be set is the location for a DSML and an instance model.

• Insert the DSML’s path models/metamodel.dpf.xmi into the
dpf_metamodel property’s value attribute.

• Insert the instance model’s path models/author.dpf.xmi into the
dpf_model property’s value attribute.

• Save the file.

Defining the instance model at this moment, does not affect anything as it
is only used when running the generator. The definition of the DSML on the
other hand is more interesting; every time a resource gets changed in the
project, we scan it and try to retrieve a valid path to a DSML. The first check
is to see if a workflow file is defined. If so, it will look for the dpf_metamodel
attribute and see if a value is defined. If a value is defined, it will mirror the
path in the no.hib.dpf.codegen.xpand.ui.prefs file and load the specifcation
for use in the DPF Xpand metamodel. If no such value is found in the at-
tribute, the tool will try to find a path in the no.hib.dpf.codegen.xpand.ui.prefs
file. If this fails as well, no metamodel will be loaded for the project. This
solution is admittely not the most optimal, as it will not work with more than
one DSML per project (in its current state).

5.4.4 Defining the Template

Now that we have defined a DSML in the workflow file, we get editor sup-
port. We have defined our input model as well, and created a draft of our
output. We will now define a template for creating model classes and use
Xtend and Java extensions where it is needed.

NOTE: When creating/reading templates in Xpand, make sure
that the font encoding is set to UTF-8 or another encoding which
support guillemets (« and »).

Basic Xpand Concepts

• Open the templ.xpt file.

The only content of the file is:

«IMPORT dpf»

«DEFINE main FOR dpf::Specification»

«ENDDEFINE»

CHAPTER 5. DEMONSTRATING THE TOOL 74

A DEFINE block for a Specification type is required to start with, as it is
the assumed input object for the generator. DEFINE statements are also
called definitions or templates. The DEFINE statements are the building
blocks of the template files; each statement can invoke other DEFINE
statements and so on.

In our example template, the main block engulfs all of the other DEFINE
blocks. The main block is invoked through the workflow engine using
<expand value="template::templ::main FOR dpf"/>. dpf is the model
slot defined in the DPF Reader (see 4.5.5). The Specification object that
represents a DPF model has a hierarchy which is reflected in the templates
we create.

The next step in our template is to create a DEFINE statement for a graph.

NOTE: Guillemets are created using Ctrl+< for « and
Ctrl+Shift+< for ».

• Add the following listing to templ.xpt:

«DEFINE graph FOR dpf::Graph»

«ENDDEFINE»

To invoke the graph block from main, we need an EXPAND statement. The
EXPAND statement is used for invoking other DEFINE blocks.

• Inside the main block, add:

«EXPAND graph FOR this.graph»

The EXPAND statement expands the graph block with the Specification
object’s internal graph object. The this handle refers to the object which
the DEFINE block pertains to.

Our DSML defines the concept DomainClass which represents a model
class for use in a Play web application. The next step in our template is to
iterate over every DomainClass which is defined in the instance model.

• Create a new DEFINE statement:

«DEFINE domainclasses FOR dpf::DomainClass»

«ENDDEFINE»

• Add the following line to the graph DEFINE block:

«EXPAND domainclasses FOREACH this.getDomainClasses()»

CHAPTER 5. DEMONSTRATING THE TOOL 75

We start to see how the DPF Xpand metamodel lets us express the
concepts of our DSML rather than the DPF Ecore model (see section 4.3
for an example). The getDomainClasses() method is a custom
convenience method defined in the DPF Xpand metamodel’s GraphType.
Using this method we iterate over every DomainClass instead of its type
node, Node. An important observation is that we use FOREACH when we
want to invoke a DEFINE statement for each element in a collection.

In Java, a class is defined in its own file. This means we need to create a
Java class file for each DomainClass type in our instance model. This is
achieved using the FILE statement.

• Inside the domainclasses block, add:

«FILE this.name.toFirstUpper() + ".java"»
«ENDFILE»

The FILE statement creates a file with a name as argument. The example
shows that we retrieve the name of the current DomainClass using this.
We also take advantage of the built-in string operation toFirstUpper()
that returns the name with the first letter as uppercase.

• Run the MWE workflow by right-clicking the workflow file and
selecting "Run As -> MWE Workflow".

We should now see two empty files called "Author.java" and "Book.java" in
our src-gen folder.

The basic constructs of Xpand are now familiar and we can start defining
the content of the files we generate. From within the FILE block we can
insert the first statements.

Creating an Extension

• Inside the FILE block, add:

package «this.getAClassBelongsTos().get(0).target.name»;

• Run the workflow.

When executing the workflow, we generate two files which only contains a
package declaration in the src-gen folder. Although the statement looks a
bit messy, the semantics are easy to grasp. From the current DomainClass
type, we retrieve all the outgoing classBelongsTo arrows. The DPF Xpand
metamodel defines every getter for an outgoing arrow as a collection for
consistency reasons throughout the tool, despite the use of a [1..1]
multiplicity constraint on the particular arrow. When we have retrieved the
arrow, we call the target attribute, which retrieves the node that the arrow

CHAPTER 5. DEMONSTRATING THE TOOL 76

points to, and lastly we fetch the target node’s name. We observe that
Eclipse displays an error icon on our generated files, and tells us that the
files are in the wrong package. This happens because we have told the
generator to output everything to the src-gen directory. In our metamodel
we have specified that each model class can have its own package which
means we do not want to hardcode the package path. Fortunately we can
delimit the FILE statement’s name argument with a slash, thus defining the
output file’s path.

Creating a valid path for the FILE statement is an example on where you
can use extensions, rather than perform program logic within the
template. Replacing all "." with a "/" is done using a single line of code, but
it will look tidier with a descriptive method name.

• Create a new package called extensions.

• Create a new file in the extensions package called dpfplay.ext.

• Insert the following code:

import dpf;
getPackage(DomainClass d):

d.getAClassBelongsTos().get(0).target.name.replaceAll("\\.",
"/") + "/";

• Insert the following right below the import dpf statement in our
template:

«EXTENSION extensions::dpfplay»

• Modify the FILE statement inside the domainclasses block:

«FILE packageName(this)+this.name.toFirstUpper() + ".java"»

• Run the workflow again.

The generator should now output the files into its proper package
no.hib.dpf.codegen.examples.dpfplay.models.

The Type nodes in our model can be any type as we have not intended any
restrictions on which types that are allowed. We must then take care of
this inside our templates (or extensions).

• Create a new DEFINITION statement called imports:

«DEFINE imports FOR List[dpf::Attribute]»
«FOREACH this AS e»

«IF e.target.name == "Date"»
import java.util.Date;

«ENDIF»
«ENDFOREACH»

«ENDDEFINE»

CHAPTER 5. DEMONSTRATING THE TOOL 77

• Add an EXPAND statement below the package definition in
domainclasses:

«EXPAND imports FOR this.getAAttributes()»

We now have an import for the Date type if it is defined in the template. In
a more advanced scenario, it would perhaps be easier to use a fully
qualified name for the import to avoid long chains of IF statements for
definition of every possible type. Clearly defining which types are allowed
would also be a way to fend off unnecessary complexity.

Creating a Java Extension

Creating collections of Reference types is possible, and this means we
need to handle this in a proper manner. We need to figure out if the
Reference is constrained with a multiplicity constraint, and what the
bounds are.

In the DPF Ecore metamodel, constraints are defined on the graph and not
on the nodes and arrows it constrains2. Each constraint contains a list of
the nodes and arrows it constrains, and a reference to the predicate which
it is an instance of. To identify what kind of constraint we are dealing with,
we need to look at its predicate. When writing templates, these are the
idiosyncrasies which can be dealt with through defining operations in our
DPF Xpand metamodel’s type system. Unfortunately there is no solution
for this in place for various reasons (see section 4.5.4). Creating an
extension to simplify the process is a satisfactory solution for now.

In Xpand we can define Java extensions which are an Xtend function that
calls methods in external Java classes.

• Create a new Java file in the extensions package called
TemplateHelper.java.

• Insert the following content:

package extensions;

import no.hib.dpf.core.Node;

public class TemplateHelper {
public static String printArrayImport(Node n) {

return "import java.util.ArrayList;";
}

}

2In the latest version of the DPF core, constraints can be retrieved on the nodes and arrows
it constrains. The code generation tool is not (yet) compatible with the new API.

CHAPTER 5. DEMONSTRATING THE TOOL 78

• Insert into dpfplay.ext:

String publicArrayImport(DomainClass d):
JAVA extensions.TemplateHelper.printArrayImport(no.hib.dpf.

core.Node);

• Insert a call to this extension in your template below the imports
EXPAND statement.

For now we hardcode the return value from the Java extension.

Type inference in Xtend3 does not apply to Java extensions which is why
we have specified String as the return value. One must also use the fully
qualified name of the class and method to invoke it.

Finishing the Template

Up until now we have been thorough with the explanations of the Xpand
language and its concepts. We are now equipped with enough knowledge
to speed things up.

• Below the printArrayImport insert:

public class «this.name.toFirstUpper()» {
«getDomainClassAttrRef(this.getAAttributes(), this.

getAReferences())»

public «this.name»(«paramList(this.getAAttributes(), this.
getAReferences())») {
«constructorSetAttributes(this.getAAttributes(), this.

getAReferences())»
}

}

• The extensions above are found listed below.

All of the defined extensions needs to know if we have a multiplicity
constraint so that it can write ArrayList<Book> instead of Book. The
extensions shown in listing 5.5.1 shows both Xtend extensions as well as
Java extensions. The listing below demonstrates the vast amount of code
needed to handle simple constraints using the DPF API directly.

3Xtend is the Xpand extension language, see section 3.7.

CHAPTER 5. DEMONSTRATING THE TOOL 79

package extensions;
import java.util.List;
import no.hib.dpf.core.Arrow;
import no.hib.dpf.core.Constraint;
import no.hib.dpf.core.Node;

public class TemplateHelper {
public enum Mult {MANY_TO_ONE, ONE_TO_MANY, MANY_TO_MANY,

ONE_TO_ONE};
private static String MULT_CONSTRAINT = "[mult(m,n)]";
public static Mult parseConstraint(String expr) {

String f,l;
Mult m;
try {

f = expr.substring(0, expr.indexOf(’,’));
l = expr.substring(expr.indexOf(’,’) + 1, expr.length());

if(Integer.parseInt(f) == 1 && Integer.parseInt(l) == -1)
{
m = Mult.ONE_TO_MANY;

} else if(Integer.parseInt(f) == -1 && Integer.parseInt(l)
== -1) {

m = Mult.MANY_TO_MANY;
} else if(Integer.parseInt(f) == -1 && Integer.parseInt(l)

== 1) {
m = Mult.MANY_TO_ONE;

} else m = Mult.ONE_TO_ONE;
} catch (StringIndexOutOfBoundsException e) {

m = Mult.ONE_TO_ONE;
}
return m;

}
public static String printArrayImport(Node n) {

List<Arrow> la = n.getOutgoingArrows();
boolean ret = false;
for(Arrow a : la) {

ret = hasOneOrManyToOtherConstraint(a);
if (ret) return "import java.util.ArrayList;";

}
return "";

}
public static String getAttr(Arrow a) {

if(hasOneOrManyToOtherConstraint(a)) return "private ArrayList
<" +

a.getSource().getName() + "> " + a.getName() + ";"
;

else return "public " + a.getTarget().getName() + " " + a.
getName() + ";";

}

CHAPTER 5. DEMONSTRATING THE TOOL 80

public static boolean hasOneOrManyToOtherConstraint(Arrow a) {
for(Constraint c : a.getGraph().getConstraints()) {

if(c.getPredicate().getSymbol() != null &&
c.getPredicate().getSymbol().equals(

MULT_CONSTRAINT)) {
for(Arrow tmp : c.getConstrainedArrows()) {

if(tmp != null && a != null && tmp.getId() == a.
getId()

&& !parseConstraint(c.getParameters()).
equals(Mult.MANY_TO_ONE)) {

return true;
}

}
}

}
return false;

}

public static String getParamList(List<Arrow> aa, List<Arrow> aaa)
{

StringBuffer ret = new StringBuffer();
ret.append(paramList(aa));
if (aaa.size() != 0 && ret.length() != 0)

ret.append(", " + paramList(aaa));
return ret.toString();

}
private static String paramList(List<Arrow> aa) {

StringBuffer ret = new StringBuffer();
for(int i = 0; i < aa.size(); ++i) {

Arrow a = aa.get(i);
if(hasOneOrManyToOtherConstraint(a)) ret.append("ArrayList

<" +
a.getSource().getName() + "> " + a.getName());

else ret.append(a.getTarget().getName() + " " + a.getName
());

if(i < aa.size()-1) ret.append(", ");
}
return ret.toString();

}
public static String getConstructorInit(List<Arrow> aa, List<Arrow

> aaa) {
StringBuffer ret = new StringBuffer();
for(int i = 0; i < aa.size(); ++i) {

Arrow a = aa.get(i);
ret.append("this." + a.getName() + " = " + a.getName() + "

;");
}
return ret.toString();

}
}

CHAPTER 5. DEMONSTRATING THE TOOL 81

import dpf;
extension org::eclipse::xtend::util::stdlib::io;
packageName(DomainClass d):

d.getAClassBelongsTos().get(0).target.name.replaceAll("\\.", "/")
+ "/";

String printArrayImport(DomainClass d):
JAVA extensions.TemplateHelper.printArrayImport(no.hib.dpf.core.

Node);

getDomainClassAttrRef(List[dpf::Attribute] attr, List[dpf::Reference]
ref):
let attrRet = attr.collect(e|getAttr(e)) :

attrRet.addAll(ref.collect(e|getRef(e)));

String getAttr(dpf::Attribute a):
JAVA extensions.TemplateHelper.getAttr(no.hib.dpf.core.Arrow);

String getRef(dpf::Reference r):
JAVA extensions.TemplateHelper.getAttr(no.hib.dpf.core.Arrow);

String paramList(List[dpf::Attribute] attr, List[dpf::Reference] ref):
JAVA extensions.TemplateHelper.getParamList(java.util.List, java.

util.List);

constructorSetAttributes(List[dpf::Attribute] attr, List[
dpf::Reference] ref):
let constructorInitList = attr.collect(e|"this." + e.name + " = "

+ e.name + ";") :
constructorInitList.addAll(ref.collect(e|"this." + e.name + "

= " + e.name + ";"));

Listing 5.3: Listing shows the Xtend extensions for our generator.

Using Java extensions to mitigate the unpractical DPF API results in
verbose code which we would like to avoid. The solution entails looping
through all the constraints defined for the graph, finding the ones which
are instances of the multiplicity predicate, and then looping through its
constrained arrows comparing each one against the outgoing reference
arrows of our DomainClass node. This can be achieved in a slightly more
consise and elegant way using the Xtend language.

When we run the workflow, Xpand should generate two Java classes which
contains valid code. The classes demonstrate handling multiplicity by
checking if each reference is constrained by a multiplicity constraint. The
example code is very simple and uninteresting, but has potential to define
a lot more with few adjustments.

To make the example a little bit more interesting, we will generate a CRUD
(create,read, update, delete) interface for our model classes. Fortunately
Play makes this very easy for us with its built-in CRUD module.

CHAPTER 5. DEMONSTRATING THE TOOL 82

5.5 Creating a Play Project

The Play framework comes with a plug-in for Eclipse. The functionality is
limited due to the separate runtime that is provided with the framework.
The Play runtime comes with a web server for testing the web application.
Everytime a resource is changed and saved, the Play runtime will update
the application on the fly. Creating a new Play project is achieved through
the Play runtime’s command-line interface (CLI). This tool creates and
administers the projects. It controls which modules that should be active,
running tests and it generates IDE specific configuration files for each
project.

The first step is to obtain the Play framework from the project’s web site.
The version used in this example is 1.2.4, and not the most recent version.
Version 2 was recently released with a lot of improvements. Unfortunately
this release was too late for the use in this thesis.

1. Obtain Play from
http://www.playframework.org/documentation/1.2.4/install.
Follow installation instructions.

2. Create new project using play new dpfcrud.
3. Create Eclipse-project configuration with play eclipsify dpfcrud.
4. Import project into Eclipse workspace using the import wizard.

5.5.1 Configuring Play

The next step is to enable the CRUD module in Play. This is done through
the dependencies.yml file in the conf directory. We must also resolve the
dependencies and generate new Eclipse project files. Each module is
created as a linked resource within the project, and must therefore update
the .project file.

• Open dependencies.yml and add "-> crud" after "- play".

• Run play dependencies dpfcrud.

• Run play eclipsify dpfcrud.

• Refresh your project in Eclipse.

Play needs to know which database JPA should use. In this example we will
use an in memory database for simplicity.

• Open the application.conf file and add:

db=mem

The configuration file shows examples on how to use other datasources like
PostgreSQL and MySQL.

http://www.playframework.org/documentation/1.2.4/install

CHAPTER 5. DEMONSTRATING THE TOOL 83

The next thing to do is redirect every HTTP request to the /admin area
through the CRUD module. Defining which part of the application that
handles specific URLs is done through the routes file in the conf directory.

• Open the routes file and add the following rule before the last rule:

* /admin module:crud

5.5.2 Modifying our Generator

We need to alter our generator to generate JPA annotations, as well as
controllers for the CRUD module. The template file templ.xpt should look
like so:

«IMPORT dpf»
«EXTENSION extensions::dpfplay»
«DEFINE main FOR dpf::Specification»
«EXPAND graph FOR this.graph»

«ENDDEFINE»

«DEFINE graph FOR dpf::Graph»
«EXPAND domainclasses FOREACH this.getDomainClasses()»

«ENDDEFINE»

«DEFINE domainclasses FOR dpf::DomainClass»
«FILE "models/"+this.name.toFirstUpper() + ".java"»
package models;

«printArrayImport(this)»
«EXPAND imports FOR this.getAAttributes()»
import javax.persistence.Entity;
import play.db.jpa.Model;

@Entity
public class «this.name.toFirstUpper()» extends Model {

«FOREACH getDomainClassAttrRef(this.getAAttributes(), this.
getAReferences()) AS e»

«e-»
«ENDFOREACH»

public «this.name.toFirstUpper()»(«paramList(this.
getAAttributes(), this.getAReferences())») {

«FOREACH constructorSetAttributes(this.getAAttributes(),
this.getAReferences()) AS e»

«e-»
«ENDFOREACH»

}
}

«ENDFILE»
«FILE "controllers/"+this.name.toFirstUpper() + "s.java"»

CHAPTER 5. DEMONSTRATING THE TOOL 84

package controllers;
import play.mvc.*;
import play.*;

public class «this.name.toFirstUpper()+"s"» extends CRUD {

}
«ENDFILE»

«ENDDEFINE»

«DEFINE imports FOR List[dpf::Attribute]»
«FOREACH this AS e»
«IF e.target.name == "Date"»
import java.util.Date;

«ENDIF»
«ENDFOREACH»

«ENDDEFINE»

Listing 5.4: Listing shows the updated Xpand template.

Listing 5.4 shows the updated template. As the code we are generating is
still very simple, we have avoided changing the models. We have
generated @Entity annotations for the model classes. The seasoned
developer might notice that none of the datafields are generated with an
@Id annotation which is mandatory. This happens in the Model class which
we extend, where a generic id is created for each entity.

To generate the controller classes, we have introduced a new FILE
statement which also generates a file for each DomainClass. Each model
has a corresponding controller class. By convention the controllers have a
plural name of the corresponding model, e.g. Author becomes Authors. To
enable the CRUD functionality, we only need to extend the CRUD controller.

We have decided to ignore the Package as models and controllers always
reside in their respective package (model and controller) in the app/
source folder.

CHAPTER 5. DEMONSTRATING THE TOOL 85

5.5.3 Running the Project

Now that everything is ready, we can run the workflow and generate our
code. If desired you can hardcode the path to the Play project in the
src-gen attribute in the workflow file. If not, you need to copy and paste
the files into your Play project.

• Run workflow.

• Copy and paste generated files into Play project. Model files goes in
app/models, controllers goes in app/controllers.

• Use the Play console tool to run: play run dpfcrud.

• Point your browser to http://localhost:9000/admin/.

If everything went according to plan, you should see a simple CRUD
interface for your model classes like figure 5.5 and figure 5.6 shows.

5.5.4 Conclusion

The tutorial has shown how the process of creating a code generator
works. We start off by defining our DSML and a sample instance model and
corresponding textual output.

Through the chapter we have seen the basic building blocks and features
of a Xpand template, everything from defining the output to using
extensions for abstracting away complex code. Lastly, we have seen how to
generate a simple CRUD interface using Play.

The complete example project can be found at
http://dpf.hib.no/downloads/, which includes Eclipse integration for
the project.

http://localhost:9000/admin/
http://dpf.hib.no/downloads/

CHAPTER 5. DEMONSTRATING THE TOOL 86

Figure 5.5: Figure depicts the CRUD interface which Play provides for simple model classes.

Figure 5.6: Figure depicts editing an Author object with the Play CRUD interface.

Chapter 6

Conclusion

This chapter will give an overview of what has been achieved through this
project. The code generation tool which is developed in this project serves
as a proof of concept solution which we will propose further work on. As
the thesis has had some focus on the concept of language workbenches, we
will propose some further work in this directon as well.

6.1 Summary

Previous efforts to create a DPF based tool has never reached the level of
maturity needed to start serious work on code generation. With the work
of Øyvind Bech and Dag Viggo Lokøen, we now have a diagrammatic editor
which conveys the most important metamodelling concepts in DPF. The
editor is built on top of a solid platform that enables us to create rich
tooling for the DPF project. Through the chapters of this thesis we have
created a solution for metamodel based code generation with the Xpand
framework. Like the DPF Editor, this solution is based on Eclipse
technologies and is thus well integrated.

Although the creation of a metamodel for Xpand is not a unique concept,
we have yet to find any implementations of custom metamodels besides the
ones provided with the framework.

Through the project we achieved the following:

General solution for creating code generators
We have introduced a solution which can be applied to any DSML
created with the DPF Editor. The solution provides a functional
environment for creating code generators. Creating a metamodel for
Xpand has enabled us to use the domain concepts of a DSML when
defining templates, extensions and constraints checking. This is
possible because the metamodel is a mapping from DPF
specifications to types which Xpand understands. We have defined a

87

CHAPTER 6. CONCLUSION 88

type system which represents each of the modelling constructs in
DPF (i.e. node, arrow, constraint etc.). The types expose the
functionality that is defined in the DPF Ecore metamodel, together
with additional functionality that is defined to enhance the process of
creating code generators.

Eclipse integration
With the implementation of a Xpand metamodel, we get a lot of
functionality (almost) for free. Xpand provides a rich editing
experience for templates, extensions and constraint checking based
on the DPF Xpand metamodel. The editors feature code completion,
syntax coloring, refactoring and error highlighting among others.

Moved DPF Editor towards becoming a language workbench
A DSML without any tooling around it is worthless. One of the most
essential activities in a language workbench is model
transformations, where model-to-text transformations might be the
most pragmatic solution. Creating a usable language workbench
without the support of creating code is arguably not a language
workbench. Although the code generation activity can be seen as
separate from creating the language itself, it is indeed part of a
language workbench.

6.2 Further Work

This section will propose further work for the code generation tool, as well
as some suggestions for features that takes the DPF Editor further towards
becoming a language workbench.

6.2.1 Code Generation

The code generation tool should be regarded as a prototype as it have not
been properly tested. The following section will explore some of the
aspects which can be worked on.

Work on Shortcomings

Section 4.7 contains a small list of functionality which is not implemented
at the time of writing. The tasks are relatively simple to implement, but
might be time consuming.

Consistent API: This is not a shortcoming in the tool itself, but a
project-wide problem. When relying on the DPF core API, one is very
prone to errors due to modifications in the DPF Ecore metamodel
(e.g. changing names, methods etc.). However, the biggest problem

CHAPTER 6. CONCLUSION 89

with this is rendering all "older" DPF models invalid. A migration
strategy is needed, both for the API and models.

Constraints and predicates as Xpand types: Predicates and
constraints are not properly implemented using their designated
types (PredicateType and ConstraintType) for various reasons. The
current functionality might be sufficient for now, but hopefully
adoption of the tool will help to identify where the need for
alterations lies.

Test coverage: The DPF Xpand metamodel has not been properly tested.
Creating tests is also a challenge, and hard without using DPF models
directly. Spending development time on creating model based tests is
a waste of time if the models become invalid after the first change to
the DPF Ecore metamodel.

Namespaces: Implementing the support for more than one DSML per
project was not a priority when developing the DPF Xpand
metamodel. This is a relatively simple task to achieve.

Validating Constraints

The DPF Editor validates the different entities when creating a DSML.
Each layer gets checked for the correct typing, and all constraints are
validated. When creating a code generator the validation of constraints is
left to the user. E.g. if a model has some kind of multiplicity constraint,
there is no way to check if the constraint has been fulfilled in the
generated code. Xpand provides a constraints checking language called
Check (see section 3.7), but this language works on the Xpand types rather
than checking if the template code has fulfilled the constraints, which is
defined within the model. Check can however be used to validate the
generator’s input models if this is desired.

An idea can be to define a post-processor (see Xpand documentation [54])
which scans the output and checks statements against the model.

Investigate Xtend 2

In section 3.7.1, the Xtend 2 language is introduced as the replacement for
Xpand. Xtend 2 is a general programming language (GPL) which compiles
to Java. Unfortunately Xtend 2 is not compatible with Xpand as it is a
completely different approach (Xpand uses an interpreter). Xtend 2 has not
been properly investigated to draw any conclusions on if it can be used in
the DPF Editor providing the same functionality as Xpand. At the time of
writing there are indications which suggests that Xtend 2 is not able to
fulfill the use case that Xpand fills, namely interpreting models runtime,
and providing an editing environment based on the content of the model.
The good news is that the template language used in Xtend 2 is Xpand,

CHAPTER 6. CONCLUSION 90

which means any templates written in the current tool, will (largely) be
compatible with Xtend 2. This does not apply to any extensions specified,
as these are written in Xtend 2.

Although Xpand’s future is uncertain, it will be supported a while longer.
This means that bugs will be fixed, but no larger releases will occur.

A few solutions to this problem can be:

• Migrate our solution to Xtend 2

• Fork the Xpand project

• Create an in-house code generation solution

• Find another solution (e.g. Acceleo)

It is the author’s opinion (based on the current knowledge) that Xpand is a
better solution than Xtend 2. Xtend 2 is a GPL that uses Xpand "template
expressions" within the code, thus mixing code and templates. As stated,
there does not seem to be any way of interpreting DPF models, which
means we are back to using the Ecore instance directly (see section 4.3).

This is not a pressing issue as Xpand is a modern solution with a very
stable code base.

6.2.2 Language Workbench

A part of the DPF project’s vision is to create a working tool that increases
the developer’s productivity, and do not exist solely for academic purposes.
This thesis has introduced the term language workbench, which is a
pragmatic take on the MDE methodology. In a language workbench the
tooling which supports the modeler and its users are of upmost
importance. This section will propose further work that will move the DPF
Editor even closer towards the goal of becoming a productive language
workbench.

Symbol Editor

One of the challenges the DPF Editor faces is visualizing the DSMLs. In
chapter 2 we looked at MetaCase’s MetaEdit+ tool, which has the ability to
create custom symbols for their object modelling entity. This is an effective
way of communicating the intent of the language and its concepts. In DPF
there is no support for attributes on the nodes, there is only nodes and
arrows. A DSML of only nodes and arrows can look a lot more complex
than it actually is, which then becomes a usability problem.

To tackle the problem with complex models, one can create create symbols
for nodes and arrow. Currently there is support for using simple
pre-defined shapes, like ellipse, square, circle etc.

CHAPTER 6. CONCLUSION 91

The most recent work by Ph.D. student Xiaoliang Wang has resulted in a
signature editor where one can define custom predicates. All predicates
needs a symbol, which means a symbol editor would be a nice fit for this
requirement as well. The symbol editor can be a simple drawing
application, with the possibility of importing graphics.

Visualization for DSMLs

Even though symbols will create a better user experience when modelling,
the problem of only having nodes and arrows are not dealt with. Our
models are centered around graph concepts. A solution to this problem is
to create a visualization independent of the underlying model structure.
One can group different nodes and arrows, and create a visualization for
the group. As an example we could group the DomainClass, Attribute and
Type concepts from the DSML in chapter 5, and create a visualization
similar to an UML class.

This way DSML modelers have a greater freedom in how he/she wants to
present the domain concepts of the created language. One could also ship
the tool with pre-defined DSMLs, visualizations and code generators that
defines e.g. UML class diagrams, a language for modelling Android apps,
petri-nets etc.

A solution like this is as far as the author knows unique, and would
probably give an advantage over other language workbenches.

Textual Representation of DPF models

The comparsion at the end of chapter 2 mentioned the need for a textual
representation of models in addition to projectional representations in
language workbenches. Of the more popular solutions on the market, no
one seems to have this feature. The language workbenches are either
textual or graphical. An optimal solution would be a textual, human
readable representation of a DPF model which the graphical
representation was based on. Any modifications in either model should be
reflected in the other.

We have through Florian Mantz’ Ph.D. work, an external DSL for DPF
which could be integrated with the DPF Editor.

File Format

The current state of file formats in DPF are XMI serializations of the
specifications, as well as the corresponding visualization1. A file format
could be an archive file which contained all the specifications in a

1The serialization of the visualization is recent work by Ph.D. student Xiaoliang Wang, and
was not implemented for the most part of this projects’ time span

CHAPTER 6. CONCLUSION 92

metamodelling hierarchy, together with its visualizations and signature. If
a textual model representation is integrated in the DPF Editor, there needs
to be room for this in the file format as well. An important aspect of this
task is to create a file handling facility which can keep compatibility
between different versions files, and the models within.

Version Control System for Models

Creating a VCS for DPF models would be another unique feature for the
DPF Editor. This subject was the focus of Alessandro Rossini’s Ph.D.
thesis [46] which provides a formal approach to the problem.

6.3 Final Words

The work on this thesis has resulted in a prototype code generation tool,
which provide the opportunity to create code generators for an arbitrary
DSML. Code generation is an important activity in MDE, and thus an
important feature in a language workbench. A usable code generation
facility is critical for the success of the DPF Editor.

Even though the Xpand framework’s future is uncertain, it is a state of the
art tool. The author is confident that Xpand and the prototype developed in
this thesis is a solid foundation for further work.

Bibliography

[1] Acceleo. Project Web Site. http://www.eclipse.org/acceleo/.

[2] Apache Ant. Project Web Site. http://ant.apache.org/.

[3] Apache log4j. Project Web Site.
http://logging.apache.org/log4j/.

[4] Øyvind Bech. DPF Editor – A Multi-Layer Modelling Environment for
Diagram Predicate Framework in Eclipse. Master’s thesis,
Department of Informatics, University of Bergen, Norway, May 2011.

[5] Kent Beck and Cynthia Andres. Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley Professional, 2004.

[6] Frank Budinsky, Ed Merks, and David Steinberg. EMF: Eclipse
Modeling Framework 2.0 (2nd Edition). Addison-Wesley Professional,
2006.

[7] Peter Pin-Shan Chen. The entity-relationship model toward a unified
view of data. ACM Trans. Database Syst., 1:9–36, March 1976.

[8] Steve Cook and Stuart Kent. The domain-specific ide. UPGRADE,
IX:17–22, April 2008.

[9] International Business Machines Corp. Eclipse platform technical
overview, 2006.

[10] Ole-Johan Dahl and Kristen Nygaard. Simula: an algol-based
simulation language. Commun. ACM, 9:671–678, September 1966.

[11] Zinovy Diskin and Boris Kadish. Variable set semantics for keyed
generalized sketches: formal semantics for object identity and
abstract syntax for conceptual modeling. Data Knowl. Eng.,
47(1):1–59, 2003.

[12] Django Project. Web Site. http://www.djangoproject.com/.

[13] DPF: Diagram Predicate Framework. Project Web Site.
http://dpf.hib.no/.

[14] Eclipse. Community Forums. http://www.eclipse.org/forums/.

93

http://www.eclipse.org/acceleo/
http://ant.apache.org/
http://logging.apache.org/log4j/
http://www.djangoproject.com/
http://dpf.hib.no/
http://www.eclipse.org/forums/

BIBLIOGRAPHY 94

[15] Eclipse Naming Conventions. Project Web Site.
http://wiki.eclipse.org/Naming_Conventions.

[16] Eclipse Platform. Project Web Site. http://www.eclipse.org.

[17] Eclipse Xtend. Project Web Site. http://www.eclipse.org/xtend/.

[18] Eclipse Xtext. Project Web Site. http://www.eclipse.org/Xtext/.

[19] Eclipse Xtext. Xtext/Xtend Documentation Code Generator Example.
http://www.eclipse.org/Xtext/documentation/2_1_0/
040-first-code-generator.php.

[20] Edgewall Software. Trac Project Web Site.
http://trac.edgewall.org/.

[21] M. Fowler and R. Parsons. Domain-specific languages. Addison
Wesley Signature Series. Addison-Wesley, 2010.

[22] Cesar Gonzalez-Perez and Brian Henderson-Sellers. Modelling
software development methodologies: A conceptual foundation. J.
Syst. Softw., 80:1778–1796, November 2007.

[23] Grails. Project Web Site. http://grails.org/.

[24] Ørjan Hatland. Sketcher .NET – A drawing tool for generalized
sketches. Master’s thesis, Department of Informatics, University of
Bergen, Norway, June 2006.

[25] Jack Herrington. Code Generation in Action. Manning Publications,
revised edition, July 2003.

[26] IBM. Reflection Tutorial.
http://www.ibm.com/developerworks/library/j-dyn0603/.

[27] Itemis. Company Web Site. http://www.itemis.com.

[28] Java Naming Conventions. Project Web Site. http://www.oracle.
com/technetwork/java/codeconventions-135099.html.

[29] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling:
Enabling Full Code Generation. Wiley-IEEE Computer Society Pr,
March 2008.

[30] Christian Kroiss, Nora Koch, and Alexander Knapp. Uwe4jsf: A
model-driven generation approach for web applications. In Martin
Gaedke, Michael Grossniklaus, and Oscar Díaz, editors, Web
Engineering, volume 5648 of Lecture Notes in Computer Science,
pages 493–496. Springer Berlin / Heidelberg, 2009.
10.1007/978-3-642-02818-2_46.

[31] Language Workbench Competition. Competition Web Site. http:
//www.languageworkbenches.net/index.php?title=Main_Page.

http://wiki.eclipse.org/Naming_Conventions
http://www.eclipse.org
http://www.eclipse.org/xtend/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/documentation/2_1_0/040-first-code-generator.php
http://www.eclipse.org/Xtext/documentation/2_1_0/040-first-code-generator.php
http://trac.edgewall.org/
http://grails.org/
http://www.ibm.com/developerworks/library/j-dyn0603/
http://www.itemis.com
http://www.oracle.com/technetwork/java/codeconventions-135099.html
http://www.oracle.com/technetwork/java/codeconventions-135099.html
http://www.languageworkbenches.net/index.php?title=Main_Page
http://www.languageworkbenches.net/index.php?title=Main_Page

BIBLIOGRAPHY 95

[32] Lift Web Framework. Web Site. http://www.liftweb.net/.

[33] Robert Cecil Martin. Agile Software Development: Principles,
Patterns, and Practices. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2003.

[34] Mercurial. Project Web Site. http://mercurial.selenic.com/.

[35] MetaCase. Company Web Site. http://www.metacase.com/.

[36] MetaCase. MetaEdit+ Manual.
http://www.metacase.com/support/45/manuals/mwb/Mw.html.

[37] Object Management Group. Web site. http://www.omg.org.

[38] Object Management Group. Meta-Object Facility Specification,
January 2006.
http://www.omg.org/cgi-bin/doc?formal/2006-01-01.

[39] Object Management Group. Object Constraint Language
Specification, May 2006.
http://www.omg.org/cgi-bin/doc?formal/2006-05-01.

[40] Object Management Group. Unified Modeling Language
Specification, November 2007.
http://www.omg.org/cgi-bin/doc?formal/2007-11-04.

[41] Object Management Group. MOF Model to Text Transformation
Language Specification, January 2008.
http://www.omg.org/spec/MOFM2T/.

[42] OMG Model Driven Architecture. Web Site.
http://www.omg.org/mda/.

[43] openArchitectureWare. Reference Manual, December 2008.
http://www.openarchitectureware.org/pub/documentation/4.3.
1/openArchitectureWare-4.3.1-Reference.pdf.

[44] Yngve Lamo Florian Mantz Øyvind Bech, Adrian Rutle and Xiaoliang
Wang. DPF Editor: A Multi-Layer Diagrammatic (Meta)Modelling
Environment. In SPLST 2011: 12th Symposium on Programming
Languages and Software Tools, October 2011.

[45] Play Framework. Project Web Site.
http://www.playframework.org/.

[46] Alessandro Rossini. Diagram Predicate Framework meets Model
Versioning and Deep Metamodelling. PhD dissertation, Department of
Informatics, University of Bergen, Norway, 2011.

[47] Adrian Rutle. Diagram Predicate Framework: A Formal Approach to
MDE. PhD dissertation, Department of Informatics, University of
Bergen, Norway, 2010.

http://www.liftweb.net/
http://mercurial.selenic.com/
http://www.metacase.com/
http://www.metacase.com/support/45/manuals/mwb/Mw.html
http://www.omg.org
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?formal/2007-11-04
http://www.omg.org/spec/MOFM2T/
http://www.omg.org/mda/
http://www.openarchitectureware.org/pub/documentation/4.3.1/openArchitectureWare-4.3.1-Reference.pdf
http://www.openarchitectureware.org/pub/documentation/4.3.1/openArchitectureWare-4.3.1-Reference.pdf
http://www.playframework.org/

BIBLIOGRAPHY 96

[48] Adrian Rutle, Uwe Wolter, and Yngve Lamo. Generalized Sketches
and Model-Driven Architecture. Technical Report 367, Department of
Informatics, University of Bergen, Norway, February 2008.

[49] Stian Skjerveggen. (Towards an) Implementation of a Graphical
Editor for Diagrammatic Predicate Logic in the Eclipse Platform.
Master’s thesis, Department of Informatics, University of Bergen,
Norway, June 2008.

[50] Sven Efftinge. Sven Efftinge’s Blog. http:
//blog.efftinge.de/2010/12/xtend-2-successor-to-xpand.html.

[51] The Agile Alliance. Project Web Site.
http://www.agilealliance.org/.

[52] The Eclipse Graphical Modeling Project. Project Web Site.
http://www.eclipse.org/modeling/gmp/.

[53] Eelco Visser. WebDSL: A case study in domain-specific language
engineering. In R. Lammel, J. Saraiva, and J. Visser, editors,
Generative and Transformational Techniques in Software Engineering
(GTTSE 2007), Lecture Notes in Computer Science. Springer, 2008.

[54] Xpand. Project Web Site. http://wiki.eclipse.org/Xpand.

http://blog.efftinge.de/2010/12/xtend-2-successor-to-xpand.html
http://blog.efftinge.de/2010/12/xtend-2-successor-to-xpand.html
http://www.agilealliance.org/
http://www.eclipse.org/modeling/gmp/
http://wiki.eclipse.org/Xpand

	List of Figures
	Preface
	1 Introduction
	1.1 Motivation
	1.2 Structure of Thesis

	2 Model-based Development
	2.1 Model-driven Engineering
	2.2 Metamodelling
	2.3 Constraints
	2.4 Language Workbenches
	2.5 Existing Language Workbench Solutions
	2.6 Diagram Predicate Framework
	2.7 DPF Editor
	2.8 Comparison

	3 Code Generation
	3.1 What is Code Generation?
	3.2 Why use Code Generation?
	3.3 Creating a Code Generator
	3.4 Editing Generated Code
	3.5 Metamodels and Code Generation
	3.6 Framework Analysis
	3.7 Xpand

	4 Design and Development
	4.1 Development Process
	4.2 Project Overview
	4.3 Problem Description
	4.4 Metamodels in Xpand
	4.5 DPF Xpand Metamodel
	4.6 Integration with Eclipse
	4.7 Shortcomings in the Tool
	4.8 Feature Overview

	5 Demonstrating the Tool
	5.1 Components/Packages
	5.2 Choosing a Framework
	5.3 Problem Description
	5.4 Creating the Generator
	5.5 Creating a Play Project

	6 Conclusion
	6.1 Summary
	6.2 Further Work
	6.3 Final Words

	Bibliography

