
Replace this file withprentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at theENTCS Macro Home Page.

A Formal Approach to Data Validation Constraints
in MDE

Alessandro Rossini, Khalid A. Mughal, Uwe Wolter

Department of Informatics
University of Bergen

Bergen, Norway

Adrian Rutle, Yngve Lamo

Department of Computer Engineering
Bergen University College

Bergen, Norway

Abstract

Software security encompasses the measures taken to ensureconfidentiality, integrity and availability in soft-
ware systems. In present-day software development, security is often an afterthought rather than part of the
software development life-cycle. In order to reveal potential security flaws before a software system is actually
implemented, security aspects should be taken into accountstarting from the early phases of the development.
With model-driven engineering (MDE) gaining momentum in both academia and industry, an interesting chal-
lenge is the specification of security constraints within software models. In this paper we focus on data valida-
tion – the process of ensuring that a system operates on correct and meaningful data – in the context of MDE.
Our contribution is a formal approach to the specification ofdata validation constraints which involve multiple
structural properties. In addition, constraints specifiedat model level are mapped to Java annotations which are
then transformed to executable tests by an existing data validation framework.

Keywords: data validation; model-driven engineering; category theory; Diagram Predicate Framework; SHIP
Validator

1 Introduction

Software systems are nowadays widespread in all walks of society. Violating the
confidentiality, integrity and availability of these systems can therefore lead to a
negative impact on the economy and health. Software security aims at ensuring
that these properties are not compromised. In present-day software development,
security is often neglected because of lack of skills and budget, and time-to-market

c©2011 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Rossini et al.

constraints. Typically, security concerns are consideredfar too late when the sys-
tem is already nearing deployment. This is clearly insufficient since security as-
pects should be taken into account starting from the early phases of the develop-
ment [8,11] in order to reveal potential security flaws before a software system is
actually implemented.

Model-driven engineering (MDE) is a branch of software engineering which
aims at improving productivity, quality, and cost-effectiveness of software by shift-
ing the paradigm from code-centric to model-centric. MDE promotes models and
modelling languages as the main artefacts of the development process and model
transformation as the primary technique to generate (partsof) software systems
out of models. Models enable developers to reason at a higherlevel of abstraction
while model transformation alleviates developers from repetitive and error-prone
tasks such as coding.

In this regard, an interesting challenge is the specification of security constraints
within models. In this paper we focus on data validation – theprocess of ensuring
that a system operates on correct and meaningful data – in thecontext of MDE.
The lack of proper data validation is listed as the most prevalent cause of software
vulnerabilities by the OWASP [14].

In the state-of-the-art of MDE, models are typically specified by means of mod-
elling languages such as the Unified Modeling Language (UML)[13]. These mod-
elling languages are diagrammatic and allow for the specification of constraints on
single structural properties, e.g., a data validation constraint on a single input field.
However, the specification of complex constraints on multiple structural properties,
e.g., data validation constraint on multiple input fields, requires textual constraint
languages such as the Object Constraint Language (OCL) [12].

It is the authors’ experience that a completely diagrammatic approach to the
specification of data validation constraints in MDE would bedesirable [17]. The
contribution of this paper is a formal approach to the specification of data valid-
ation constraints which can involve multiple, interdependent structural properties.
The underpinning of the proposed approach is the Diagram Predicate Framework
(DPF) [15,16,17,18] which provides a formalisation of (meta)modelling and model
transformation based category theory [1] and graph transformation [5]. The paper
also shows how data validation constraints specified at model level are mapped to
Java annotations. These annotations are in turn transformed to executable tests at
run-time by the SHIP Validator [7,10], a Java based framework which enables the
validation of multiple interdependent properties of Java objects.

The remainder of the paper is structured as follows. Section2 presents DPF.
Section3 introduces the formal approach to data validation by means of a running
example. In Section4, the current research in security within MDE is summar-
ised. Finally, in Section5, some concluding remarks and ideas for future work are
outlined.

2

Rossini et al.

2 Diagram Predicate Framework

Before introducing DPF, the terminology adopted in this paper is clarified. The
termmodelhas different meanings in different contexts. In software engineering,
a model denotes “an abstraction of a (real or language-based) system allowing pre-
dictions or inferences to be made” [9]. Models in software engineering are typically
diagrammatic.

The termdiagramhas also different meanings in different contexts. In software
engineering, a diagram denotes a structure which is based ongraphs, i.e., a col-
lection of nodes together with a collection of arrows between nodes. Graphs are
a well-known and well-understood means to represent structural and behavioural
properties of a software system [5], e.g., Entity-Relationship (ER) diagrams and
UML diagrams [13].

Since graph-based structures are often visualised in a natural way, the termsdia-
grammaticandvisual and are often treated as synonyms. In this paper, however,
visualisation and diagrammatic syntax are clearly distinguished; i.e., this work fo-
cuses on syntax and semantics of diagrammatic models independent of their visu-
alisation.

In DPF, a model is represented by aspecificationS. A specificationS =
(S, CS : Σ) consists of anunderlying graphS together with a set ofatomic con-
straintsCS which are specified by asignatureΣ. A signatureΣ = (ΠΣ , αΣ)
consists of a collection ofpredicatesπ ∈ ΠΣ, each having an arity (or shape graph)
αΣ(π), a proposed visualisation and a semantic interpretation. An atomic con-
straint(π, δ) consists of a predicateπ ∈ ΠΣ together with a graph homomorphism
δ : αΣ(π) → S from the arity of the predicate to the underlying graph of the
specification.

Definition 2.1 [Signature] A signatureΣ = (ΠΣ, αΣ) consists of a collection of
predicate symbolsΠΣ and a mapαΣ which assigns a graph to each predicate sym-
bol π ∈ ΠΣ . αΣ(π) is called thearity of the predicate symbolπ.

Definition 2.2 [Atomic constraint] Given a signatureΣ = (ΠΣ , αΣ), an atomic
constraint(π, δ) on a graphS consists of a predicate symbolπ ∈ ΠΣ and a graph
homomorphismδ : αΣ(π) → S.

Definition 2.3 [Specification] Given a signatureΣ = (ΠΣ, αΣ), a specification
S = (S, CS:Σ) consists of a graphS and a setCS of atomic constraints(π, δ) on
S with π ∈ ΠΣ .

The semantics of nodes and arrows of the underlying graph of aspecification
has to be chosen in a way which is appropriate for the corresponding modelling
environment [17]. In object-oriented structural modelling, each object may be re-
lated to a set of other objects. Hence, it is appropriate to interpret nodes as sets and

arrowsX f
−→ Y as multi-valued functionsf : X → ℘(Y). The powerset℘(Y) of Y

3

Rossini et al.

is the set of all subsets ofY , i.e.,℘(Y) = {A | A ⊆ Y }. Moreover, the compos-
ition of two multi-valued functionsf : X → ℘(Y), g : Y → ℘(Z) is defined by
(f ; g)(x) :=

⋃
{g(y) | y ∈ f(x)}.

Example 2.4 [Signature and specification] Let us consider an information system
for the management of students and universities. The information system has the
following requirements:

(i) A student studies atone to fouruniversities.

(ii) A university educatesnone to manystudents.

Table1 shows a signatureΣ = (ΠΣ, αΣ) which is suitable for object-oriented
structural modelling.

Table 1
A signatureΣ = (ΠΣ , αΣ)

π αΣ(π) Proposed vis. Semantic interpretation

[mult(m, n)] 1 a 2 X
f

[m..n]
Y ∀x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n andn ≥ 1

[injective] 1 a 2 X
f

[inj]
Y ∀x, x′ ∈ X : f(x) = f(x′)

impliesx = x′

[surjective] 1 a 2 X
f

[surj]
Y ∀y ∈ Y ∃x ∈ X : y ∈ f(x)

[inverse] 1
a

2
b

X

f

Y

g

[inv] ∀x ∈ X , ∀y ∈ Y : y ∈
f(x) iff x ∈ g(y)

S(b)S(a)

uStuds
University

sUnivs
StudentStudent University

sUnivs

uStuds

[1..4]

[surj]

[inv]

Figure 1. A specificationS = (S, CS:Σ) and its underlying graphS

Fig. 1(a) shows a specificationS = (S, CS : Σ) which is compliant with the
requirements above. Fig.1(b) shows the underlying graphS of S, i.e., the graph
of S without any atomic constraints.

In S, the nodesStudent andUniversity are interpreted as setsStudent and
University, and the arrowssUnivs anduStuds are interpreted as multi-valued
functionssUnivs : Student → ℘(University) and uStuds : University →
℘(Student), respectively.

4

Rossini et al.

Based on the requirementi, the functionsUnivs has cardinality between one
and four. This is enforced by the atomic constraint([mult(1, 4)], δ1) on the
arrow sUnivs. Moreover, the functionuStuds is surjective. This is enforced by
the atomic constraint([surjective], δ3) on the arrowuStuds. Finally, the
functionssUnivs anduStuds are inverseof each other, i.e.,∀s ∈ Student and
∀u ∈ University : s ∈ uStuds(u) iff u ∈ sUnivs(s). This is enforced by the
atomic constraint([inverse], δ2) on sUnivs and uStuds. The graph homo-
morphismsδ1, δ2 andδ3 are defined as follows (see Table2):

δ1(1) = Student, δ1(2) = University, δ1(a) = sUnivs

δ2(1) = Student, δ2(2) = University, δ2(a) = sUnivs, δ2(b) = uStuds

δ3(1) = University, δ3(2) = Student, δ3(a) = uStuds

Table 2
The atomic constraints(π, δ) ∈ CS and their graph homomorphisms

(π, δ) αΣ(π) δ(αΣ(π))

([mult(1, 4)], δ1) 1
a

2 Student
sUnivs University

([inverse], δ2) 1

a

2

b

Student

sUnivs

University
uStuds

([surjective], δ3) 1
a

2 University uStuds
Student

Remark 2.5 [Predicate symbols] Some of the predicate symbols inΣ (see Table1)
refer to single predicates, e.g.,[surjective], while some others refer to a fam-
ily of predicates, e.g.,[mult(m, n)]. In the case of[mult(m, n)], the pre-
dicate is parametrised by the (non-negative) integersm andn, which represent the
lower and upper bounds, respectively, of the cardinality ofthe function which is
constrained by this predicate.

The semantics of predicates of the signatureΣ (see Table1) is described using
the mathematical language of set theory. In an implementation, the semantics of
a predicate is typically given by the code of a correspondingvalidator where both
the mathematical and the validator semantics should coincide. However, it is not
necessary to choose between the above mentioned possibilities; it is sufficient to
know that any of these possibilities defines valid instancesof predicates.

Definition 2.6 [Semantics of predicates] Given a signatureΣ = (ΠΣ, αΣ), a se-
mantic interpretation[[..]]Σ of Σ consists of a mapping that assigns to each predicate
symbolπ ∈ ΠΣ a set[[π]]Σ of graph homomorphismsι : O → αΣ(π), called valid
instances ofπ, whereO may vary over all graphs.[[π]]Σ is assumed to be closed
under isomorphisms.

The semantics of a specification is defined in the so-calledfibred way [4,20];
i.e., the semantics of a specification is given by the set of its instances. An instance

5

Rossini et al.

(I, ι) of a specificationS consists of a graphI together with a graph homomorph-
ism ι : I → S which satisfies the set of atomic constraintsCS .

To check that an atomic constraint is satisfied in a given instance of a spe-
cificationS, it is enough to inspect only the part ofS which is affected by the
atomic constraint. This kind of restriction to a subpart is obtained by the pullback
construction [1], which can be regarded as a generalisation of the inverse image
construction.

Definition 2.7 [Instance of specification] Given a specificationS = (S, CS : Σ),
an instance(I, ι) of S consists of a graphI and a graph homomorphismι : I → S

such that for each atomic constraint(π, δ) ∈ CS we haveι∗ ∈ [[π]]Σ, where the
graph homomorphismι∗ : O∗ → αΣ(π) is given by the following pullback:

αΣ(π) δ S

O∗

P.B.

δ∗

ι∗

I

ι

3 Data Validation

A running example based on [7,10] is adopted to show how the formal approach
to (meta)modelling can be applied to the problem of data validation. Note that the
example is kept intentionally simple, retaining only the details which are relevant
for the discussion.

Example 3.1 [International money transfers] Let us consider international money
transfers.IBAN (International Bank Account Number) is the standard for identify-
ing bank accounts internationally. Some countries have notadopted this standard
and, for money transfer to these countries, a specialclearing codeis needed in
combination with the plainaccount number. BIC (Bank Identifier Code) is the
standard for identifying banks globally. Therefore, a formfor international money
transfers should contain (at least) the input fieldsbic, iban, account andclearing-
Code. Moreover, supposing that the currency is Euro, the form should also contain
the input fieldsamountEuros andamountCents. In addition, the transfer system
should satisfy the following requirements:

(i) The BIC code of the beneficiary’s bank is required.

(ii) Either the IBAN or both clearing code and account numberare required.

(iii) The amount to transfer must be between0.01 and100000.00 Euros.

Table3 shows a signatureΦ = (ΠΦ, αΦ) which contains predicates used to
specify data validation constraints.

Note that in the semantic interpretation of the[cross-range] predicate we
denote lexicographical order by≤.

6

Rossini et al.

Table 3
The data validation signatureΦ

π αΦ(π) Proposed vis. Semantic interpretation

[required] 1
a

2 X •

f Y ∀x ∈ X : f(x) defined

[exactly-one-
null]

1
a

b

2

3

X f

g
[eon]

Y

Z

∀x ∈ X : (f(x) defined and
g(x) undefined) or (f(x) un-
defined andg(x) defined)

[all-or-none-
null]

1
a

b

2

3

X
f

g
[aonn]

Y

Z

∀x ∈ X : (f(x) defined
andg(x) defined) or (f(x) un-
defined andg(x) undefined)

[cross-range-
((m1, n1), (m2, n2))]

1

a

b

2 X

f

g

[m1.n1−m2.n2] Int ∀x ∈ X : (m1, n1) ≤
(f(x), g(x)) ≤ (m2, n2)

[range(m, n)] 1
a

2 X f
[m−n] Int ∀x ∈ X : m ≤ f(x) ≤ n

P(b)P(a)

String

clearingCode

account

iban

bic

Payment

a
m
o
u
n
tE
u
ro
s

a
m
o
u
n
tC
e
n
ts

Integer

String

clearingCode [aonn]

account [eon]

iban

bic

Payment

a
m
o
u
n
tE
u
ro
s

[0
.0
1
-1
0
0
0
0
0
.0
0
]

a
m
o
u
n
tC
e
n
ts
[0
-9
9
]

Integer

Figure 2. The specificationP = (P, CP:Φ) and its underlying graphP

Fig. 2(a) shows a specificationP = (P, CP : Φ) which is compliant with the
requirements above. The form is represented by the nodePayment while the input
fields are represented by the arrowsbic, iban, account, clearingCode, amoun-
tEuros andamountCents. Fig. 2(b) presents the underlying graphP of P, i.e.,
the graph ofP without any atomic constraints.

In P, the requirementi is enforced by the atomic constraint([required],

δ1) on the arrowbic, i.e.,δ1 : (1
a
−→ 2) 7→ (Payment bic

−→ String). This atomic con-
straint ensures that the user provides a value in the input field bic. Moreover, the re-
quirementii is enforced inP by two atomic constraints:([exactly-one-null],

7

Rossini et al.

δ2) on the arrowsiban andaccount together with([all-or-none-null], δ3)
on the arrowsaccount andclearingCode. These atomic constraints ensure that
a user provides values in either the input fieldiban or both the input fieldsac-
count andclearingCode. Furthermore, the requirementiii is enforced inP by
the atomic constraint([cross-range((0, 1), (100000, 0))], δ4) on the arrows
amountEuros and amountCents. This atomic constraint ensures that the user
provides values in the input fieldsamountEuros andamountCents which sum
up to a value within the range0.01 to 100000.00. In addition, the atomic constraint
([range(0, 99)], δ5) on the arrowamountCents ensures that a user provides a
value in the input fieldamountCents within the range0 to 99.

Fig. 3(b) shows a valid instanceI of the specificationP = (P, CP: Φ). Fig. 3
also shows the mappings of the graph homomorphismι : I → P as dashed, grey
arrows.

I(b)P(a)

NO4970019999999

DNBANOKKXXX

1

10050

String

clearingCode [aonn]

account [eon]

iban

bic

Payment

a
m
o
u
n
tE
u
ro
s

[0
.0
1
-1
0
0
0
0
0
.0
0
]

a
m
o
u
n
tC
e
n
ts
[0
-9
9
]

Integer

Figure 3. The specificationP = (P, CP:Φ) and a possible instanceI

As mentioned, in an implementation, the semantics of a predicate is typic-
ally given by the code of a corresponding validator where both the mathemat-
ical and the validator semantics should coincide. In this paper, we have chosen
to base the implementation of each predicate on the SHIP Validator [7,10]. The
XMI serialisation (see Listing1) of the specificationP = (P, CP : Φ) specify-
ing the form in Example3.1 can be transformed to a Java class (see Listing2)
tagged by Java annotations compatible with the SHIP Validator. For each atomic
constraint(π, δ) ∈ CP a corresponding Java annotation is attached to the get-
ter methods of the Java class. Note that an atomic constrainton a single arrow,
e.g.,([required], δ1) on the arrowbic, translates to a single Java annotation,
e.g.,@Required on the methodgetBic(). Likewise, an atomic constraint on
multiple arrows, e.g.,([exactly-one-null], δ2) on the arrowsiban andac-
count, translates to multiple Java annotations, e.g.,@ExactlyOneNull on the
methodsgetIban() andgetAccount(). The interested reader can download
a proof-of-concept implementation of a code generator from[2].

8

Rossini et al.

Listing 1: XMI serialisation of the specificationP = (P, CP:Φ)
1 <?xml version="1.0" encoding="ASCII"?>
2 <no.hib.dpf.metamodel:Specification
3 xmlns:no.hib.dpf.metamodel="http://no.hib.dpf.metamodel"
4 id="9090a2ec-0e36-4fcc-8f04-3a0226f0a938" name="P">
5
6 <node id="525d2a64-66e1-42f8-aec9-9f186379a77b" name="Payment"/>
7 <node id="d3ae4964-d091-41d7-9127-09856b3ce316" name="String"/>
8 <node id="0cac0671-a7e0-4d99-8216-14d24f186375" name="Integer"/>
9

10 <arrow id="b5a45cda-3ee0-42a0-a568-81f9e92d7e25" name="bic" source="//@node.0"
target="//@node.1"/>

11 <arrow id="ad030229-b66c-40b5-8f7f-59f1a25e24a8" name="iban" source="//@node.0"
target="//@node.1"/>

12 <arrow id="1d54b8c6-a51b-4858-ade9-0a66522b80eb" name="account" source="//@node
.0" target="//@node.1"/>

13 <arrow id="2c4b8f89-dc27-44e6-bdb4-a0e298c26f85" name="clearingCode" source="//
@node.0" target="//@node.1"/>

14 <arrow id="07a4001b-4c8e-461f-a845-4ac985b0c36d" name="amountEuros" source="//
@node.0" target="//@node.2"/>

15 <arrow id="7559cb35-863a-49dd-a2b3-3e9e893c1356" name="amountCents" source="//
@node.0" target="//@node.2"/>

16
17 <constraints id="33003eb9-d287-4bd8-9a28-ccf6d3ea9ee0" type="[required]">
18 <arrow source="//@arrow.0" />
19 </constraints>
20
21 <constraints id="33003eb6-7987-4558-ba28-aaf693349ee0" type="[not-required]">
22 <arrow source="//@arrow.1" />
23 <arrow source="//@arrow.2" />
24 <arrow source="//@arrow.3" />
25 <arrow source="//@arrow.4" />
26 <arrow source="//@arrow.5" />
27 </constraints>
28
29 <constraints id="e0661dc3-0620-44e6-af54-07bf14875c16" type="[exactly-one-null]">
30 <arrow source="//@arrow.1" />
31 <arrow source="//@arrow.2" />
32 </constraints>
33
34 <constraints id="1160e483-b701-4c23-9641-7e73909de528" type="[all-or-none-null]">
35 <arrow source="//@arrow.2" />
36 <arrow source="//@arrow.3" />
37 </constraints>
38
39 <constraints id="e1f2bab1-b58c-4273-97bb-d0cdd14abe45" type="[cross-range]">
40 <param name="m1" value="0" />
41 <param name="n1" value="01" />
42 <param name="m2" value="10000" />
43 <param name="n2" value="00" />
44 <arrow source="//@arrow.4" />
45 <arrow source="//@arrow.5" />
46 </constraints>
47
48 <constraints id="9132c6e8-7af9-4fc6-8b67-afac0471b13b" type="[range]">
49 <param name="min" value="0" />
50 <param name="max" value="99" />
51 <arrow source="//@arrow.5" />
52 </constraints>
53
54 </no.hib.dpf.metamodel:Specification>

9

Rossini et al.

Listing 2: Java class generated by transformation
1 public class Payment {
2
3 private String bic;
4 private String iban;
5 private String account;
6 private String clearingCode;
7
8 private int amountEuros;
9 private int amountCents;

10
11 @Required
12 public String getBic() {
13 return bic;
14 }
15
16 @ExactlyOneNull
17 @NotRequired
18 public String getIban() {
19 return iban;
20 }
21
22 @ExactlyOneNull
23 @AllOrNoneNull
24 @NotRequired
25 public String getAccount() {
26 return account;
27 }
28
29 @AllOrNoneNull
30 @NotRequired
31 public String getClearingCode() {
32 return clearingCode;
33 }
34
35 @IntRange(min=0,max=100000)
36 @CrossRange
37 public int getAmountEuros(){
38 return this.amountEuros;
39 }
40
41 @IntRange(min=0,max=99)
42 @CrossRange
43 public int getAmountCents(){
44 return this.amountCents;
45 }
46
47 }

These Java annotations are in turn transformed into executable tests by the SHIP
Validator. The interested reader can consult [7,10] for details about the implement-
ation and execution of these tests. Note that the idea of using annotations to hide the
actual validation code and, at the same time, tag the properties to be tested, allow
the constraints to be easily integrated into existing code.Besides, the validation
aspects of the system remain well separated from the application aspects. This sep-
aration of concerns facilitates the transformation of the diagrammatic constraints
into actual existing working code.

10

Rossini et al.

4 Related Work

In [6], an approach to integrate input validation constraints into UML diagrams
using OCL is presented. In particular, this approach targets four different UML
diagrams, i.e., use case diagram, class diagram, sequence diagram and activity dia-
gram. This solution enables the specification of input validation constraints on
behavioural models while our approach targets structural models only. However, it
adopts a textual constraint language such as OCL while our approach is completely
diagrammatic.

In [8], the author illustrates an approach to enrich UML models with secur-
ity requirements such as secrecy, integrity and authenticity. The approach exploits
UML extension mechanisms such as keywords, tags and constraints. In particular,
keywords are used together with tags to specify security requirements on the sys-
tem, while constraints give criteria to determine if these requirements are satisfied
by the UML model. However, keywords and tags can be attached only to single
model elements, thus these mechanism are not sufficient to express data valida-
tion constraints involving multiple structural properties at the model level. On the
contrary, data validation constraints involving multiplestructural properties can be
expressed in our approach in a diagrammatic fashion.

5 Conclusion and Future Work

In this paper, we have illustrated some of the key aspects of data validation in
MDE. We have adopted DPF to define an approach to the specification of data
validation constraints in models. Moreover, we have shown how these constraints
can be mapped to Java annotations which are transformed to executable tests. The
diagrammatic and formal nature of the proposed approach constitutes the main con-
tribution and novelty of this work.

In a future work, we will introduce a reasoning system for theanalysis of pre-
dicate dependencies and a logic for this analysis. This extension will enable users
of the proposed approach to detect possible inconsistencies between data valida-
tion constraints. Moreover, we will integrate the code generator, which transforms
the constraints at model level to Java annotations, in the DPF Editor [3], a dia-
grammatic (meta)modelling tool based on DPF and Eclipse Modeling Framework
(EMF) [19].

Acknowledgement

The authors would like to thank Øyvind Bech and Dag Viggo Lokøen for the proof-
of-concept implementation of the code generator, and Federico Mancini for the
support with the SHIP Validator.

11

Rossini et al.

References

[1] Barr, M. and C. Wells, “Category Theory for Computing Science (2nd Edition),” Prentice Hall, 1995.

[2] Bech, Ø. and D. V. Lokøen, “DPF to SHIP Validator Proof-of-Concept Transformation Engine,”
http://dpf.hib.no/code/transformation/dpf_to_shipvalidator.py.

[3] Bergen University College and University of Bergen, “Diagram Predicate Framework Web Site,”
http://dpf.hib.no/.

[4] Diskin, Z. and U. Wolter,A Diagrammatic Logic for Object-Oriented Visual Modeling, in: Proceedings
of ACCAT 2007: 2nd Workshop on Applied and Computational Category Theory, Electronic Notes in
Theoretical Computer Science203/6(2008), pp. 19–41.

[5] Ehrig, H., K. Ehrig, U. Prange and G. Taentzer, “Fundamentals of Algebraic Graph Transformation,”
Springer, 2006.

[6] Hayati, P., N. Jafari, S. M. Rezaei, S. Sarencheh and V. Potdar,Modeling Input Validation in UML, in:
Proceedings of ASWEC 2008: 19th Australian Software Engineering Conference(2008), pp. 663–672.

[7] Hovland, D., F. Mancini and K. Mughal,The SHIP Validator: An Annotation-Based Content-Validation
Framework for Java Applications, Technical Report 389, Department of Informatics, University of
Bergen, Norway (2009).

[8] Jürjens, J., “Secure Systems Development with UML,” Springer, 2005.

[9] Kühne, T.,Matters of (meta-)modeling, Software and Systems Modeling5 (2006), pp. 369–385.

[10] Mancini, F., D. Hovland and K. Mughal,Investigating the Limitations of Java Annotations for Input
Validation, in: Proceedings of ARES 2010: 5th International Conference on Availability, Reliability and
Security(2010).

[11] McGraw, G., “Software Security: Building Security in,” Addison-Wesley Professional, 2006.

[12] Object Management Group, “Object Constraint LanguageSpecification,” (2010),
http://www.omg.org/spec/OCL/2.2/.

[13] Object Management Group, “Unified Modeling Language Specification,” (2010),
http://www.omg.org/spec/UML/2.3/.

[14] OWASP, “Top Ten Project,”http://www.owasp.org.

[15] Rossini, A., A. Rutle, Y. Lamo and U. Wolter,A formalisation of the copy-modify-merge approach to
version control in MDE, Journal of Logic and Algebraic Programming79 (2010), pp. 636–658.

[16] Rutle, A., “Diagram Predicate Framework: A Formal Approach to MDE,” Ph.D. thesis, Department of
Informatics, University of Bergen, Norway (2010).

[17] Rutle, A., A. Rossini, Y. Lamo and U. Wolter,A Diagrammatic Formalisation of MOF-Based Modelling
Languages, in: M. Oriol, B. Meyer, W. Aalst, J. Mylopoulos, M. Rosemann, M. Shaw and C. Szyperski,
editors,Proceedings of TOOLS 2009: 47th International Conference on Objects, Components, Models
and Patterns, Lecture Notes in Business Information Processing33 (2009), pp. 37–56.

[18] Rutle, A., A. Rossini, Y. Lamo and U. Wolter,A formal approach to the specification and transformation
of constraints in MDE, Journal of Logic and Algebraic Programming (To appear).

[19] Steinberg, D., F. Budinsky, M. Paternostro and E. Merks, “EMF: Eclipse Modeling Framework 2.0 (2nd

Edition),” Addison-Wesley Professional, 2008.

[20] Wolter, U. and Z. Diskin,From Indexed to Fibred Semantics – The Generalized Sketch File, Technical
Report 361, Department of Informatics, University of Bergen, Norway (2007).

12

http://dpf.hib.no/code/transformation/dpf_to_shipvalidator.py
http://dpf.hib.no/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/UML/2.3/
http://www.owasp.org

	Introduction
	Diagram Predicate Framework
	Data Validation
	Related Work
	Conclusion and Future Work
	References

