Replace this file witlpr ent csmacr o. st y for your meeting,
or withent csmacr 0. sty for your meeting. Both can be
found at theENTCS Macro Home Page

A Formal Approach to Data Validation Constraints
in MDE

Alessandro Rossini, Khalid A. Mughal, Uwe Wolter

Department of Informatics
University of Bergen
Bergen, Norway

Adrian Rutle, Yngve Lamo

Department of Computer Engineering
Bergen University College
Bergen, Norway

Abstract

Software security encompasses the measures taken to eosdidentiality, integrity and availability in soft-
ware systems. In present-day software development, $gésioften an afterthought rather than part of the
software development life-cycle. In order to reveal patdsiecurity flaws before a software system is actually
implemented, security aspects should be taken into acstarting from the early phases of the development.
With model-driven engineering (MDE) gaining momentum ittbacademia and industry, an interesting chal-
lenge is the specification of security constraints withifiveare models. In this paper we focus on data valida-
tion — the process of ensuring that a system operates orctamd meaningful data — in the context of MDE.
Our contribution is a formal approach to the specificatiodaif validation constraints which involve multiple
structural properties. In addition, constraints speciéiechodel level are mapped to Java annotations which are
then transformed to executable tests by an existing dai@at@n framework.

Keywords: data validation; model-driven engineering; category thebDiagram Predicate Framework; SHIP
Validator

1 Introduction

Software systems are nowadays widespread in all walks aétyod/iolating the
confidentiality, integrity and availability of these sysie can therefore lead to a
negative impact on the economy and health. Software sgaints at ensuring
that these properties are not compromised. In presentafayase development,
security is often neglected because of lack of skills andjbticand time-to-market

(©2011 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

ROSSINI ET AL.

constraints. Typically, security concerns are considésetoo late when the sys-
tem is already nearing deployment. This is clearly insidfitisince security as-
pects should be taken into account starting from the earisgh of the develop-
ment [B,11] in order to reveal potential security flaws before a sofevsystem is
actually implemented.

Model-driven engineering (MDE) is a branch of software eegring which
aims at improving productivity, quality, and cost-effeetness of software by shift-
ing the paradigm from code-centric to model-centric. MDBmotes models and
modelling languages as the main artefacts of the developpreness and model
transformation as the primary technique to generate (jd)tsoftware systems
out of models. Models enable developers to reason at a hig¥edrof abstraction
while model transformation alleviates developers fromet#fpe and error-prone
tasks such as coding.

In this regard, an interesting challenge is the specifioaif®ecurity constraints
within models. In this paper we focus on data validation —tlecess of ensuring
that a system operates on correct and meaningful data — icotitext of MDE.
The lack of proper data validation is listed as the most pesxaause of software
vulnerabilities by the OWASP1H].

In the state-of-the-art of MDE, models are typically specifoy means of mod-
elling languages such as the Unified Modeling Language (UMB). These mod-
elling languages are diagrammatic and allow for the speatifin of constraints on
single structural properties, e.g., a data validation traitd on a single input field.
However, the specification of complex constraints on migdtgbructural properties,
e.g., data validation constraint on multiple input fieldsguires textual constraint
languages such as the Object Constraint Language (Q2L) [

It is the authors’ experience that a completely diagrameragpiproach to the
specification of data validation constraints in MDE woulddssirable 17]. The
contribution of this paper is a formal approach to the speatifon of data valid-
ation constraints which can involve multiple, interdepemdstructural properties.
The underpinning of the proposed approach is the Diagramiddte Framework
(DPF) [15,16,17,18] which provides a formalisation of (meta)modelling and rabd
transformation based category theoly énd graph transformatiob]. The paper
also shows how data validation constraints specified at Mede are mapped to
Java annotations. These annotations are in turn transfiotonexecutable tests at
run-time by the SHIP Validator7[10], a Java based framework which enables the
validation of multiple interdependent properties of Jalgeots.

The remainder of the paper is structured as follows. Se@ipresents DPF.
Section3 introduces the formal approach to data validation by me&asonning
example. In Sectiod, the current research in security within MDE is summar-
ised. Finally, in Sectio®, some concluding remarks and ideas for future work are
outlined.

ROSSINI ET AL.

2 Diagram Predicate Framework

Before introducing DPF, the terminology adopted in thisgyais clarified. The
termmodelhas different meanings in different contexts. In softwargieeering,

a model denotes “an abstraction of a (real or language-pagstém allowing pre-
dictions or inferences to be mad@][Models in software engineering are typically
diagrammatic.

The termdiagramhas also different meanings in different contexts. In safew
engineering, a diagram denotes a structure which is baseplaphs, i.e., a col-
lection of nodes together with a collection of arrows betweaedes. Graphs are
a well-known and well-understood means to represent siraichknd behavioural
properties of a software syster|[e.g., Entity-Relationship (ER) diagrams and
UML diagrams [L3].

Since graph-based structures are often visualised in sahatay, the termslia-
grammaticandvisualand are often treated as synonyms. In this paper, however,
visualisation and diagrammatic syntax are clearly distisiged; i.e., this work fo-
cuses on syntax and semantics of diagrammatic models indepeof their visu-
alisation.

In DPF, a model is represented byspecification&. A specification& =
(S,C®:Y) consists of arunderlying graphS together with a set ahtomic con-
straints C® which are specified by aignatureX. A signatureX = (II*,a*)
consists of a collection gfredicatesr € I1*, each having an arity (or shape graph)
a*(r), a proposed visualisation and a semantic interpretation.atmic con-
straint(r, §) consists of a predicate € IT* together with a graph homomorphism
§ : o¥(m) — S from the arity of the predicate to the underlying graph of the
specification.

Definition 2.1 [Signature] A signatur&s = (IT*, o*) consists of a collection of
predicate symbolE* and a mapy> which assigns a graph to each predicate sym-
bol = € IT*. o*(r) is called thearity of the predicate symbai.

Definition 2.2 [Atomic constraint] Given a signaturé = (I1¥, o*), an atomic
constraint(r,) on a graphS consists of a predicate symbole I1* and a graph
homomorphisnd : o*(7r) — S.

Definition 2.3 [Specification] Given a signature = (I1*, a*), a specification
S = (5,C°: %) consists of a graph and a seC® of atomic constraintér,) on
S with 7 € 1.

The semantics of nodes and arrows of the underlying graphspgaification
has to be chosen in a way which is appropriate for the correipg modelling
environment 17]. In object-oriented structural modelling, each objectyrba re-
lated to a set of other objects. Hence, it is appropriatetarpnet nodes as sets and

arrowsX -+ Y as multi-valued functiong : X — ©(Y). The powersep(Y) of Y
3

ROSSINI ET AL.

is the set of all subsets af, i.e.,p(Y) = {A | A C Y}. Moreover, the compos-
ition of two multi-valued functions : X — p(Y), g : Y — o(Z) is defined by

(fi9)(x) :=U{gw) |y € f(x)}.

Example 2.4 [Signature and specification] Let us consider an infornmesigstem
for the management of students and universities. The irdbom system has the
following requirements:

() A student studies aine to fouruniversities.
(ii) A university educatesione to mangtudents.

Table1 shows a signaturE = (IT*, o*) which is suitable for object-oriented
structural modelling.

Table 1
A signatureX = (117, o)

™ a*(m) | Proposed vis.| Semantic interpretation

[mul t (m,n)] 1—%=2 X ||y Vee X :m < |f(x)] <n,

m.n] .
with0 <m <nandn > 1

[injective] 1—=2 x|—t>|v| | Va2’ € X : f(x) = f(z)

O I A I ;
impliesx = x

[surjective] | 1—=2 X ||y VyeY dre Xy € f(x)

| [surj]

a f

[inverse] 17 2 x@v Vie X ,VyeyY :yce
b 9 | fo)iff 2 € g(y)
sUnivs [1..4] sUnivs
Student)linv] University Student University
[surj] uStuds uStuds
(@6 b)s

Figure 1. A specificatio® = (S, C®: %) and its underlying grapl

Fig. 1(a) shows a specificatiod = (S, C®:) which is compliant with the
requirements above. Fig(b) shows the underlying graphof G, i.e., the graph
of & without any atomic constraints.

In &, the nodesStudent and University are interpreted as seffudent and
University, and the arrowsUnivs and uStuds are interpreted as multi-valued
functionssUnivs : Student — @(University) anduStuds : University —
o(Student), respectively.

4

ROSSINI ET AL.

Based on the requirementthe functionsUnivs has cardinality between one
and four. This is enforced by the atomic constrgintrul t (1,4)],0;) on the
arrow sUnivs. Moreover, the function.Studs is surjective This is enforced by
the atomic constrainf[sur j ecti ve],ds;) on the arromuStuds. Finally, the
functionssUnivs anduStuds areinverseof each other, i.elYs € Student and
Vu € University : s € uStuds(u) iff u € sUnivs(s). This is enforced by the
atomic constraint[i nver se] ,d,) on sUnivs anduStuds. The graph homo-
morphisms);, 0, andd; are defined as follows (see Taldle

41(1) = Student, 91(2) = University, d;(a) = sUnivs
d(1) = Student, 92(2) = University, d2(a) = sUnivs, d,(b) = uStuds
d3(1) = University, 65(2) = Student, d3(a) = uStuds

Table 2
The atomic constraintér, §) € C'° and their graph homomorphisms
(m, 0) o (m) (o (m))
((mult(1,4)],6) 1—%>2 | Student—™ = University
AN _ sunvs
([inverse],d2) 1 2 Student University
N ~ 0@ —
b uStuds
([surjective],ds) | 1—2=2 | University—5¥% - gp,dent

Remark 2.5 [Predicate symbols] Some of the predicate symbols (see Tabld)
refer to single predicates, e.§surj ecti ve] , while some others refer to a fam-
ily of predicates, e.g mul t (m,n)]. Inthe case of mul t (m,n)], the pre-
dicate is parametrised by the (non-negative) integeendn, which represent the
lower and upper bounds, respectively, of the cardinalityhef function which is
constrained by this predicate.

The semantics of predicates of the signaturesee Tablel) is described using
the mathematical language of set theory. In an implememathe semantics of
a predicate is typically given by the code of a correspondalglator where both
the mathematical and the validator semantics should atendHowever, it is not
necessary to choose between the above mentioned posssbiiitis sufficient to
know that any of these possibilities defines valid instammégsedicates.

Definition 2.6 [Semantics of predicates] Given a signatdre= (I1*, o), a se-
mantic interpretatiof..]* of consists of a mapping that assigns to each predicate
symbolr € I1* a set[r]* of graph homomorphisms: O — o*(r), called valid
instances ofr, whereO may vary over all graphs]=]* is assumed to be closed
under isomorphisms.

The semantics of a specification is defined in the so-cdibrdd way [4,20];
i.e., the semantics of a specification is given by the sesaoh&tances. An instance

5

ROSSINI ET AL.

(1,.) of a specificatior® consists of a graph together with a graph homomorph-
ism. : I — S which satisfies the set of atomic constrai@ts.

To check that an atomic constraint is satisfied in a giverams of a spe-
cification G, it is enough to inspect only the part & which is affected by the
atomic constraint. This kind of restriction to a subpartlsained by the pullback
construction 1], which can be regarded as a generalisation of the inveragem
construction.

Definition 2.7 [Instance of specification] Given a specificatién= (S, C°:),
an instancé/, .) of & consists of a graplh and a graph homomorphism 7 — S
such that for each atomic constraiat, 6) € C° we have.* € [r]*, where the
graph homomorphisnt : O* — o™ (r) is given by the following pullback:

o () —2 S

T rn T

O>k 5* -[

3 Data Validation

A running example based ofi,]L0] is adopted to show how the formal approach
to (meta)modelling can be applied to the problem of datadadilbn. Note that the
example is kept intentionally simple, retaining only theéails which are relevant
for the discussion.

Example 3.1 [International money transfers] Let us consider inteovai money
transfersIBAN (International Bank Account Number) is the standard fontdg-
ing bank accounts internationally. Some countries haveadopted this standard
and, for money transfer to these countries, a spaxtesdring codeis needed in
combination with the plairaccount number BIC (Bank Identifier Code) is the
standard for identifying banks globally. Therefore, a fdoninternational money
transfers should contain (at least) the input fiddats iban, account andclearing-
Code. Moreover, supposing that the currency is Euro, the fornukhalso contain
the input fieldamountEuros andamountCents. In addition, the transfer system
should satisfy the following requirements:

(i) The BIC code of the beneficiary’s bank is required.
(ii) Either the IBAN or both clearing code and account numdrer required.
(i) The amount to transfer must be betweaenl and100000.00 Euros.
Table 3 shows a signaturé = (II%,a®) which contains predicates used to
specify data validation constraints.

Note that in the semantic interpretation of {her oss- r ange] predicate we
denote lexicographical order by.

ROSSINI ET AL.

Table 3
The data validation signature
iy a®(m) Proposed vis. Semantic interpretation
[required] 1—2=2 x.—f> Vx € X : f(x) defined
[exact | y-one- 1—2=2 X ! Ve € X : (f(x) defined and
nul I'] L g(z) undefined or (f(z) un-
b . leon] defined andy(x) defined
3 —
z
[al | -or-none- 1—2=2 X ! Ve € X : (f(z) defined
nul I] L andg(z) defined or (f(x) un-
b . faonn] defined andy(x) undefined
3 —
z
a — f
TN — T ™=
[cross-range- 1 2 X| [mi.n1—ma.no] Ve € X : (mi,n1) <
((mm), (ma,n2))] | 7 | LS LU (@), 9(2)) < (ma,m2)
[range(m,n)] 1—">2 | |X|—og—[n{ | Yz € X:m< f(z)<n
bic
iban bic
Payment | account [eon] String _— iban T~
/\; .
clearingCode)[aonn] Payment String
account
% 5 clearingCode
i E 2| 2
Integer Integer
@ 0P

Figure 2. The specificatiof$ = (P, C*:®) and its underlying grapi®

Fig. 2(a) shows a specificatidp = (P, C*: ®) which is compliant with the
requirements above. The form is represented by the Ragment while the input
fields are represented by the arrolgs, iban, account, clearingCode, amoun-
tEuros andamountCents. Fig. 2(b) presents the underlying graghof ‘g, i.e.,
the graph of]3 without any atomic constraints.

In 33, the requiremenit is enforced by the atomic constraifitr equi r ed] ,
d1) on the arrowbic, i.e.,d; : (1 % 2) — (Payment Bley String). This atomic con-
straint ensures that the user provides a value in the ingdifie. Moreover, the re-
quirementi is enforced ing by two atomic constraintg{ exact | y- one-nul |],

7

ROSSINI ET AL.

d2) on the arrowsban andaccount together with([al | - or - none- nul |], d3)
on the arrowsaccount andclearingCode. These atomic constraints ensure that
a user provides values in either the input fidgddn or both the input fieldsc-
count andclearingCode. Furthermore, the requiremeiit is enforced in}3 by
the atomic constrain{ cr oss-range((0, 1), (100000,0))], d4) on the arrows
amountEuros and amountCents. This atomic constraint ensures that the user
provides values in the input fieldanountEuros andamountCents which sum
up to a value within the range01 to 100000.00. In addition, the atomic constraint
([range(0,99)], d5) on the arronamountCents ensures that a user provides a
value in the input fieldhmountCents within the range) to 99.

Fig. 3(b) shows a valid instanckof the specificatiofd = (P, C*: ®). Fig.3
also shows the mappings of the graph homomorphisnd — P as dashed, grey
arrows.

"bic
iban H . o
Payment | account Jleon] * String L — DNBANOKKXXX
clearingCode][aonn] l\
NO4970019999999
3 3 S
2l |2
5|5
2|8
o
o
2
50 100
Integer |2
CRY ®7

Figure 3. The specificatiof$ = (P, C*: ®) and a possible instande

As mentioned, in an implementation, the semantics of a pageliis typic-
ally given by the code of a corresponding validator wherenltbe mathemat-
ical and the validator semantics should coincide. In thiggpawe have chosen
to base the implementation of each predicate on the SHIRIAfali [7,10]. The
XMI serialisation (see Listing) of the specificationd = (P,C%: ®) specify-
ing the form in Example8.1 can be transformed to a Java class (see Listng
tagged by Java annotations compatible with the SHIP Validdtor each atomic
constraint(w,d) € C¥ a corresponding Java annotation is attached to the get-
ter methods of the Java class. Note that an atomic constvaiat single arrow,
e.g.,([required], 6;) on the arrowbic, translates to a single Java annotation,
e.g.,@equi r ed on the methodjet Bi c() . Likewise, an atomic constraint on
multiple arrows, e.g.([exact | y-one-nul |], d,) on the arrowsban andac-
count, translates to multiple Java annotations, e@xact | yOneNul | on the
methodget | ban() andget Account (). The interested reader can download
a proof-of-concept implementation of a code generator ffgim

8

QOWoO~NOU~WNE

=

12

13

14

ROSSINI ET AL.

Listing 1: XMl serialisation of the specificatiof = (P, C¥: ®)

<?xm version="1.0" encodi ng="ASCI | " ?>

<no. hi b. dpf . net anndel : Speci fi cati on

xm ns: no. hi b. dpf . net anodel ="htt p: // no. hi b. dpf . met anodel "
i d="9090a2ec- 0e36- 4f cc- 8f 04- 3a0226f 0a938" name="P">

<node i d="525d2a64- 66el- 42f 8- aec9- 9f 186379a77b" nane="Paynent"/>
<node i d="d3ae4964-d091-41d7-9127-09856b3ce316" nane="String"/>
<node i d="0cac0671-a7e0-4d99-8216- 14d24f 186375" nane="I| nt eger"/>

<arrow i d="b5a45cda- 3ee0- 42a0- a568- 81f 9e92d7e25" nane="bi c" source="// @ode. 0"
target="// @ode. 1"/ >

<arrow i d="ad030229- b66c- 40b5- 8f 7f - 59f 1a25e24a8" nane="i ban" source="// @ode. 0"
target="// @ode. 1"/ >

<arrow i d="1d54b8c6- a51b- 4858- ade9- 0a66522b80eb" nane="account" source="// @ode
.0" target="// @ode. 1"/ >

<arrow i d="2c4b8f 89-dc27- 44e6- bdb4- a0e298c26f 85" nane="cl eari ngCode" source="//
@ode. 0" target="//@ode.1"/>

<arrow i d="07a4001b- 4c8e- 461f - a845- 4ac985b0c36d" nane="anount Eur os" source="//
@ode. 0" target="//@ode. 2"/ >

<arrow i d="7559ch35- 863a- 49dd- a2b3- 3e9e893c1356" nane="anount Cents" source="//
@ode. 0" target="//@ode. 2"/ >

<constraints id="33003eb9-d287-4bd8- 9a28- ccf 6d3ea%ee0" type="[required]">
<arrow source="// @rrow. 0" />
</ constrai nt s>

<constraints id="33003eb6- 7987- 4558- ha28- aaf 693349ee0" type="[not-required]">
<arrow source="// @rrow. 1" />
<arrow source="//@rrow. 2" />
<arrow source="// @rrow. 3" />
<arrow source="//@rrow. 4" />
<arrow source="// @rrow. 5" />
</ constrai nt s>

<constraints id="e0661dc3-0620- 44e6- af 54- 07bf 14875c16" type="[exactly-one-null]">

<arrow source="//@rrow 1" />
<arrow source="// @rrow. 2" />
</ constrai nt s>

<constraints id="1160e483-b701- 4c23-9641- 7e73909de528" type="[all-or-none-null]">

<arrow source="//@rrow. 2" />
<arrow source="// @rrow. 3" />
</ constrai nt s>

<constraints id="elf 2babl- b58c-4273-97bb- dOcddl4abe45" type="[cross-range]">
<param nanme="nl" val ue="0" />
<par am nane="nl1l" val ue="01" />
<par am nane="nR" val ue="10000" />
<par am nanme="n2" val ue="00" />
<arrow source="// @rrow. 4" />
<arrow source="// @rrow. 5" />
</ constrai nt s>

<constraints id="9132c6e8- 7af 9- 4f c6- 8b67- af ac0471b13b" type="[range] ">
<param name="m n" val ue="0" />
<par am nanme="nax" val ue="99" />
<arrow source="// @rrow. 5" />

</ constrai nt s>

</ no. hi b. dpf . met anodel : Speci fi cati on>

ROSSINI ET AL.

Listing 2: Java class generated by transformation

public class Paynment {

private String bic;

private String iban;

private String account;
private String clearingCode;

private int anount Euros;
private int anountCents;

@Requi red
public String getBic() {
return bic;

}

@xact | yOneNul |

@Not Requi r ed

public String getlban() {
return iban;

}

@xact | yOneNul |

@A\ | Or NoneNul |

@Not Requi r ed

public String getAccount() {
return account;

}

@A | O NoneNul |

@Not Requi r ed

public String getd earingCode() {
return cl eari ngCode;

}

@ nt Range(m n=0, nax=100000)

@Cr ossRange

public int getAmount Euros(){
return this.anount Eur os;

}

@ nt Range(m n=0, nax=99)

@cr ossRange

public int getAmunt Cents(){
return this.anount Cents;

}

These Java annotations are in turn transformed into eXaeutsts by the SHIP
Validator. The interested reader can conspi()] for details about the implement-
ation and execution of these tests. Note that the idea ofj@sinotations to hide the
actual validation code and, at the same time, tag the pliepédd be tested, allow
the constraints to be easily integrated into existing cddesides, the validation
aspects of the system remain well separated from the apiphcaspects. This sep-
aration of concerns facilitates the transformation of tlegchmmatic constraints
into actual existing working code.

10

ROSSINI ET AL.

4 Related Work

In [6], an approach to integrate input validation constraints IdML diagrams
using OCL is presented. In particular, this approach tarémir different UML
diagrams, i.e., use case diagram, class diagram, sequiagcard and activity dia-
gram. This solution enables the specification of input \al@h constraints on
behavioural models while our approach targets structucalets only. However, it
adopts a textual constraint language such as OCL while qaroaph is completely
diagrammatic.

In [8], the author illustrates an approach to enrich UML model&hwsiecur-
ity requirements such as secrecy, integrity and authéntithe approach exploits
UML extension mechanisms such as keywords, tags and conistrin particular,
keywords are used together with tags to specify securityirements on the sys-
tem, while constraints give criteria to determine if thesguirements are satisfied
by the UML model. However, keywords and tags can be attachédto single
model elements, thus these mechanism are not sufficientpi@ex data valida-
tion constraints involving multiple structural propegiat the model level. On the
contrary, data validation constraints involving multigteuctural properties can be
expressed in our approach in a diagrammatic fashion.

5 Conclusion and Future Work

In this paper, we have illustrated some of the key aspectsat# dalidation in
MDE. We have adopted DPF to define an approach to the speiificat data
validation constraints in models. Moreover, we have shoom these constraints
can be mapped to Java annotations which are transforme@totable tests. The
diagrammatic and formal nature of the proposed approacstitotres the main con-
tribution and novelty of this work.

In a future work, we will introduce a reasoning system for @inalysis of pre-
dicate dependencies and a logic for this analysis. Thiseida will enable users
of the proposed approach to detect possible inconsistebeiveen data valida-
tion constraints. Moreover, we will integrate the code gatwe, which transforms
the constraints at model level to Java annotations, in thE Bé#itor [3], a dia-
grammatic (meta)modelling tool based on DPF and Eclipsediiiogl Framework
(EMF) [19].

Acknowledgement

The authors would like to thank @yvind Bech and Dag Viggo Lexkéor the proof-
of-concept implementation of the code generator, and ksmldiancini for the
support with the SHIP Validator.

11

ROSSINI ET AL.

References

[1] Barr, M. and C. Wells, “Category Theory for Computing Sute (2¢ Edition),” Prentice Hall, 1995.

[2] Bech, @. and D. V. Lokgen, “DPF to SHIP Validator Proof®@bncept Transformation Engine,”
http://dpf.hib.no/code/transformation/ dpf_to_shipvalidator. py.

[3] Bergen University College and University of Bergen, &Qram Predicate Framework Web Site,”
http://dpf. hib.no/.

[4] Diskin, Z. and U. WolterA Diagrammatic Logic for Object-Oriented Visual Modeljng: Proceedings

of ACCAT 2007: 2¢ Workshop on Applied and Computational Category The&igctronic Notes in
Theoretical Computer Scien@©3/6(2008), pp. 19-41.

[5] Ehrig, H., K. Ehrig, U. Prange and G. Taentzer, “Fundataknof Algebraic Graph Transformation,”
Springer, 2006.

[6] Hayati, P., N. Jafari, S. M. Rezaei, S. Sarencheh and Yd&dJodeling Input Validation in UML.in:
Proceedings of ASWEC 2008:‘#ustralian Software Engineering Conferer(@908), pp. 663-672.

[7] Hovland, D., F. Mancini and K. MughallThe SHIP Validator: An Annotation-Based Content-Validati
Framework for Java ApplicationsTechnical Report 389, Department of Informatics, Uniitgref
Bergen, Norway (2009).

[8] Jurjens, J., “Secure Systems Development with UML,"igger, 2005.

[9] Kuhne, T.,Matters of (meta-)modelingoftware and Systems Modelisg2006), pp. 369—385.

[10] Mancini, F., D. Hovland and K. Mughalnvestigating the Limitations of Java Annotations for Ihpu

Validation in: Proceedings of ARES 20105International Conference on Availability, Reliability @n
Security(2010).

[11] McGraw, G., “Software Security: Building Security’i®ddison-Wesley Professional, 2006.

[12] Object Management Group, “Object Constraint Languag&pecification,” (2010),
http://ww. ong. or g/ spec/ OCL/ 2. 2/.

[13] Object Management Group, “Unified Modeling Language e@iication,” (2010),
http://ww. ong. or g/ spec/ UML/ 2. 3/.

[14] OWASP, “Top Ten Projectht t p: / / www. owasp. or g.

[15] Rossini, A., A. Rutle, Y. Lamo and U. WolteA formalisation of the copy-modify-merge approach to
version control in MDE Journal of Logic and Algebraic Programmimig (2010), pp. 636—658.

[16] Rutle, A., “Diagram Predicate Framework: A Formal Apach to MDE,” Ph.D. thesis, Department of
Informatics, University of Bergen, Norway (2010).

[17] Rutle, A., A. Rossini, Y. Lamo and U. Woltef Diagrammatic Formalisation of MOF-Based Modelling
Languagesin: M. Oriol, B. Meyer, W. Aalst, J. Mylopoulos, M. Rosemar¥l. Shaw and C. Szyperski,

editors,Proceedings of TOOLS 2009: #7International Conference on Objects, Components, Models
and PatternsLecture Notes in Business Information ProcessiB¢2009), pp. 37-56.

[18] Rutle, A., A. Rossini, Y. Lamo and U. Wolted formal approach to the specification and transformation
of constraints in MDEJournal of Logic and Algebraic Programming (To appear).

[19] Steinberg, D., F. Budinsky, M. Paternostro and E. MetEMF: Eclipse Modeling Framework 2.0 2
Edition),” Addison-Wesley Professional, 2008.

[20] Wolter, U. and Z. DiskinFrom Indexed to Fibred Semantics — The Generalized SketehTechnical
Report 361, Department of Informatics, University of Bergdorway (2007).

12

http://dpf.hib.no/code/transformation/dpf_to_shipvalidator.py
http://dpf.hib.no/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/UML/2.3/
http://www.owasp.org

	Introduction
	Diagram Predicate Framework
	Data Validation
	Related Work
	Conclusion and Future Work
	References

