
Personalized and automatic model repairing using
reinforcement learning

Angela Barriga
Department of Software Engineering

Western Norway University
of Applied Sciences
Bergen, Norway

abar@hvl.no

Adrian Rutle
Department of Software Engineering

Western Norway University
of Applied Sciences
Bergen, Norway

aru@hvl.no

Rogardt Heldal
Department of Software Engineering

Western Norway University
of Applied Sciences
Bergen, Norway

rohe@hvl.no

Abstract—When performing modeling activities, the chances of
breaking a model increase together with the size of development
teams and number of changes in software specifications. Model
repair research mostly proposes two different solutions to this
issue: fully automatic, non-interactive model repairing tools or
support systems where the repairing choice is left to the devel-
oper’s criteria. In this paper, we propose the use of reinforcement
learning algorithms to achieve the repair of broken models
allowing both automation and personalization. We validate our
proposal by repairing a large set of broken models randomly
generated with a mutation tool.

Index Terms—Model Repair, Reinforcement Learning, Person-
alization

I. INTRODUCTION

Models are often used to develop key parts of systems in
engineering domains [1]. Correctness and accuracy of such
models are important to produce the systems they represent.
The difficulty of keeping models free of errors grows propor-
tionally with models size, complexity and number of changes
introduced during their lifetime. Tools that automatize or sup-
port error detection and repairing of models can improve how
organizations deal with model-driven engineering processes
by reducing the burden of manually dealing with correctness
issues, improving delivery time and final quality.

Despite the benefits aforementioned, automatic repairing has
the drawback of providing the same solution for a certain
error while each modeler may have different preferences for
repairing it. Hence, proper model repair would not be feasible
without finding a balance between automation and personal-
ization of repair [2]. Our approach permits personalization for
each modeler so that an error can be repaired in different ways.

We propose reinforcement learning (RL) as a solution for
this challenge [3]. RL consists of algorithms able to learn by
themselves how to interact in an environment only needing
a set of available actions and rewards for each of these
actions [4]. RL provides the necessary structure to adapt to
different personalization settings and to perform better after
each execution. The contributions of this paper are (i) an
approach to apply RL for model repair, and (ii) a proof of
concept implementation.

II. BACKGROUND

This section introduces some basic theoretical notions of RL
and Q-Learning in order to provide a comprehensive guide to
understand the rest of this paper.

The authors in [5] stress how the combination of machine
learning (ML) and modeling could be beneficial for the future
of the modeling domain. In particular, ML could reduce the
amount of time spent in repairing broken models and improve
its quality once repaired. Many well-known ML algorithms
depend on large amounts of data to learn how to repair a
problem [6]. This is a challenge in the modeling domain
since available model repositories (like [7], [8]) only offer
data limited in terms of size and diversity.

We propose RL because a training phase and labelled
data are no longer needed; learning is achieved from the
interaction between a learning agent and its environment (see
Fig. 1). The agent performs actions in the environment that
changes its state. Each action gets a reward depending on the
state produced. Performance will be poor at the beginning,
improving as the agent gains experience. For example, if the
environment is a maze, the agent is a robot, the action is
walking one step to the right and the state the current position
of the robot in the maze, then, the new state would be the
robot’s new location: one position to the right. If the action
is positive for the agent (moving to a free space), it receives
a reward, contrarily (stepping on a wall) it is penalized. The
agent continues performing actions, seeking the highest reward
until it reaches its ultimate goal; e.g., the exit of the maze.

RL is a field with many different algorithms, we choose
Q-learning [4] as a proof of concept to apply RL to repair
models. The reasoning behind this decision is the simplicity
to deal with diverse information due to its table nature. In Q-
Learning, knowledge is stored in a structure called Q-table,
which is easy to export and import into new executions and
keeps data in a generic format. The agent chooses then the
most optimal action available by consulting the Q-table. This
table is initialized with zeros when the algorithm begins, and
it is updated while the agent interacts with the environment
with repeated calculations based on the Bellman Equation [9]:



Action

Agent Environment

State

Reward

Fig. 1: Agent-environment interaction in RL

Qt+1(st, at) = Qt(st, at) + α(r + γmaxaQt(st+1, at+1)−Qt(st, at))

This equation returns a weight, called Q-value, telling that
the maximum future reward is the reward r the agent received
for entering the current state st with some action at plus the
maximum future reward for the next state st+1 and action
at+1 reduced by a discount factor γ to avoid falling in a local
maximum. This allows to infer the value of the current state
st based on the calculation of the next one st+1, which can
be used to calculate an optimal policy to select actions (while
future states are not known in a real system, we can obtain
them by repairing current state st with at and checking which
is the next error st+1 to repair, since we can obtain all errors
present in a faulty model at any repairing time t). The factor
α provides the learning rate, which determines how much Q-
values change from one iteration to the next one. From here,
the algorithm can determine the optimal action to apply to the
next state until it reaches its final goal; this process is known
as exploitation, and this calculation is repeated every time t
the algorithm selects an action.

One of the variables used to calculate the Q-value, is the
maximum weight stored in the Q-table for the next error to
repair (maxaQt(st+1, at+1)). This allows us to measure the
consequences of applying a certain action in the model (e.g.,
if applying an action creates a new unknown error this action
will be punished, getting a lower weight).

Additionally, the algorithm can pick random actions instead
of the one with biggest reward in order to find new and perhaps
more optimal solutions; this process is called exploration [10].
By combining both exploitative and explorative policies, RL
can provide a wider range of solutions.

Each iteration in which the agent performs actions to
achieve the final goal is called an episode. Inside the episode,
the agent performs several steps attempting to find the best
action for the current state. For every action performed in
a state, the agent updates the values of the Q-table for that
pair of state and action. The number of episodes and steps are
decided depending on the size of the problem to solve (i.e., the
number of states and actions) so that the agent can get enough
time to reach its final goal. The Q-table can be exported and
later imported in new executions, this way the agent will gain
experience and will perform better with time.

III. MODEL REPAIR

In this section, we present our approach for using RL in
model repair. At the moment, we repair well-formedness errors

Fig. 2: Repairing of 3 errors in a sample class

in class diagram models. To perform the repair, first, we
need a modeling framework able to provide us with errors
present in a model, every context where each error can be
repaired and a list of actions to modify the model. In our
implementation, we obtain them from the Eclipse Modeling
Framework (EMF) [11]. Therefore, the errors the approach is
able to repair correspond to the catalogue of errors provided
by the EMF diagnostician.

Regarding actions, first, the algorithm filters actions invok-
able in each error’s contexts (e.g., for an error in an attribute,
only actions regarding attributes). Then, actions are filtered
again, maintaining only those which are able to repair any of
the errors. The EMF diagnostician provide contexts organized
in a hierarchy, ordered by their level in the model (e.g., a
class has a higher level than attributes and operations, which
belong to classes). For example, err2 in Fig. 2 (attributes
with repeated names) can be repaired at the class (Person)
by deleting it, or by deleting or renaming any of the faulty
attributes. This makes 3 possible repairing contexts, being
class (Person) the highest, attribute1 (name) the middle, and
attribute2 (name) the lowest. This error, (err2) will always
keep these exact contexts (class - attribute1 - attribute2),
independent of the model in which it appears. When contexts
belong to the same level of the model, like attributes in
this example, the hierarchy order is based on their spatial
arrangement (attribute1 appears above attribute2).

Based on this example, a starting point for err2 in our
RL algorithm would be the Q-table showed in Table I, with
all weights initialized to zero (values showed in Table I are
calculated during the repairing). The Q-table adapted to model
repair is a 3-dimensional structure, storing a weight for a
combination of error, context and action. Table I contains only
those actions able to repair err2 in any of its contexts, other
actions are discarded.

Our use of RL is slightly different from the standard. In the
example of the robot and the maze (see Section II), the final
goal is finding the exit of the maze and the robot performs
actions towards it. In our case, we aim to completely repair
the model, but our RL algorithm must repair one error before
moving to the next one. By targeting one error at a time, we
reduce the state space of the algorithm. Hence, while the robot
does not know about the states of the maze, we know the errors
that are present in the model (our states). In our model repair
process, the objective is not just to repair the model, but to



Error Context Action Weight

Attributes with
repeated names

class (Person) delete -100

attribute1 (name) setName 300.19
delete -150

attribute2 (name) setName 116.84
delete -300

TABLE I: Q-Table contents for err2 in Fig. 2

find the best possible sequence of concrete actions to repair
each error, where the “best” sequence is the one aligned with
the user preferences.

To do so, the Q-learning algorithm is executed during a
number of episodes, each episode being a complete iteration
that repairs the model. The algorithm starts with the Q-table
initialized with zeros, therefore, it attempts to repair the first
error found in the model with different actions following
a try-and-fail approach. That is, it attempts to repair the
error in all its contexts by applying all possible actions (the
ones remaining after filtering by context and by repairing).
When the repairing succeeds, if the action is aligned with the
user preferences it will get rewarded and otherwise punished
(negative reward when punishing, positive when rewarding).
By using the equation detailed in Section II, the algorithm
calculates a weight (Q-value) using these rewards and stores
it in the Q-table, indicating how good an action is for repairing
an error in a context.

The algorithm continues trying different actions for each
context in the error, calculating and storing its weights in
the Q-table until there are no more errors to repair in the
model and the episode finishes. When facing a combination of
errors, contexts and actions, with an already calculated weight,
the weight gets updated; the more a weight gets updated the
more precise it will become. For instance, if the algorithm
learns the same action in a context is able to repair an error
multiple times, the weight will be higher, reflecting the quality
of that action. Eventually, the weight will be so high that the
algorithm learns that combination of action and context is the
best repairing for the error. Table I shows the Q-table contents
for err2 in Fig. 2 after several repairing episodes, with weights
calculated by following the preferences of a user who prefer
not to delete elements in the model and to repair errors as
high in the context hierarchy as possible.

Once each episode finishes, the algorithm generates a se-
quence with all concrete repairing actions found during that
episode, which is stored for later evaluation. Thanks to the
explorative (random) nature of RL, episodes generate different
sequences. When all episodes finish, the algorithm evaluates
all sequences found. To do so, it calculates a total weight
for each sequence by adding the weights of the contained
actions. Finally, the algorithm compares the total weight of
all sequences, selecting the one with highest value. All actions
contained in the selected sequence get their Q-table weights
increased so that the algorithm learns which actions led to
repairing the model. For the example in Fig. 2, the algorithm
repairs class Person by choosing a sequence of actions (see
Repairing sequence) which comply with the aforementioned
simulated preferences: not to delete elements in the model and

100 mutants (5 x 20) 100 repaired models

RL system
User 

preferencesMutation process

5 models

Fig. 3: RL model repair evaluation using mutation testing

to repair errors as high in the context hierarchy as possible
(first attribute name is renamed to age).

IV. EVALUATION

In this section, we perform an evaluation of our approach
by repairing a set of 100 broken models using RL. We start
by introducing the evaluation setup and data preparation, fol-
lowed by an example of how one concrete model is repaired.
Finally we present the obtained results. The objectives of
this evaluation are to prove that RL can (i) repair a set of
real-world models, (ii) learn while repairing them (improving
its performance with time), and (iii) perform repairing while
respecting user preferences. The evaluation source code is
available in [12]. Figure 3 shows an overview of the evaluation.
We implemented a RL system to repair broken models using
Java in Eclipse Oxygen (the Modeling package). The system
code is executed on a laptop with the following specifications:
Windows 10 Home, Intel Core i5-6300U @2.4GHz, 64 bits,
16GB RAM. To evaluate our approach, we have selected 5
Ecore [11] models extracted from GitHub. We selected them
to show that the algorithm is able to deal with real-world
models. The models are taken from the following projects:
RandomEMF [13], OCCIware ecore [14] (from which the
model in Section IV-A is extracted), amlMetaModel [15],
EMF-fragments [16] and MDEForge [17]. Although they can
also be considered as metamodels, we treat them as models
since we search and repair well-formedness errors with respect
to the Ecore metamodel [11].

To obtain a set of broken models for our experiment, for
each of these Ecore models we created 20 mutant models by
using AMOR Ecore Mutator [18], an EMF-based framework
to randomly mutate models conforming to the Ecore meta-
model. Each mutant is a modification of an original model
introducing inconsistencies (see Fig. 4 in Section IV-A for
a sample mutant). The criteria for choosing the 5 original
models was that (i) AMOR could process them and that
(ii) the introduced errors had enough diversity; we observed
that errors were almost the same for every mutant of some
of the models. If the produced mutants did not match this
criteria, its original Ecore file was discarded and we proceeded
with another one. In our preparation, we created a total of
100 mutant, broken models. These mutants have different
sizes, from small models (3 classes, less than 10 references,
attributes and operations, size of 5KB) to big ones (85 classes,
+1400 references, 400 attributes, 5000 operations, size of



KindAction

_Ctkk0CkxEemeRejLunDsLw
(_CtrSgCkxEemeRejLunDsLw)

Extension

name	:	String
scheme	:	String
	types	:	EDataType

Configuration

[0..*]	actions

[0..*]	kinds

term

[0..*]	/entities[0..*]	use

err6,	err27,	err40

err13,	err14

Kind
Action

_Ctkk0CkxEemeRejLunDsLw
(_CtrSgCkxEemeRejLunDsLw	
String)

		1

Extension

name	:	String
scheme	:	String
	types	:	EDataType

Configuration

[0..*]	actions

[0..*]	kinds

term

[0..*]	use

err6,	err27,	err40

err13,	err14

Fig. 4: Example mutant from OCCI ecore before and after repairing

280KB). AMOR is able to introduce 6 types of mutations: add
annotations, add objects, delete objects, move objects, unset
features and update features. All of these mutations are used
in this evaluation. Moreover, 16 different types of errors were
reported in the mutants. The number of errors introduced in
each model ranged from 1 to 13.

For this evaluation, we have simulated the following person-
alization preferences: (i) avoid deletion of elements from the
model, (ii) repair errors as high in the error context hierarchy
as possible and (iii) punish modification of the original model
structure. Preferences (i) and (ii) are the same as the ones
applied in the example in Fig. 2.

A. Example

Next, we show an example of how one of the mutant models
is repaired. The selected mutant originally contains 15 classes,
30 references, 25 attributes, 1 operation and 4 datatypes. To
preserve the length of this paper, Fig. 4 shows only faulty parts
of the model.

First, the EMF diagnostician extracts all errors present in
the model. For this model, it finds 5 errors, their locations
are highlighted in Fig. 4 with their respective error codes (see
details in Table II). Regarding err6, when defining operations
in EMF, modelers can set an upper and lower bound [11] for
the returned attribute. Such bounds can be used to make the
value returned by the operation a multi-valued attribute. This
is, containing distinct values, e.g., if we had an attribute called
hobby of type string with a lower bound of 2 and upper of 3,
this would mean the attribute would contain a list with at least
2 strings and a maximum of 3. By default, operations have a
lower bound of 0 and an upper of 1, since their return type
is a singled-valued type. Also, Action class in Fig. 4 contains
a method named with a sequence of random characters (the
same name is used for the parameter inside the method). These
names are part of the mutations introduced by AMOR, but
since they do not contain any characters unsupported by EMF,
introducing them did not produce any errors.

Then, after filtering actions available in EMF by context
and repairing (as detailed in Section III), 11 different actions
remain (the same action might be possible to apply in dif-
ferent errors). Next, the Q-Learning algorithm runs during
15 episodes (according to our testing, between 10 and 20
episodes are enough for the algorithm to converge), each of
them with a maximum of 20 steps (an episode will finish once

Error Code Message

err6 The lower bound X must be less or equal to the upper
bound Y

err13 The opposite must be a feature of the reference’s type

err14 The opposite of the opposite may not be a reference
different from this one

err27 An operation with void return type must have an upper
bound of 1 not X

err40 The typed element must have a type

TABLE II: EMF diagnostician’s details of errors in Fig. 4

the maximum steps value is reached or when there are no more
errors to repair in the model, 20 steps provide the algorithm
enough time but not too much to avoid falling in never-ending
repairing loops). In each step, one action is selected, whether
from the Q-Table (the one with highest weight) or randomly.
When each episode ends, the algorithm returns a sequence of
actions.

Finally, when all episodes finish, the algorithm picks the
best sequence found (discarding those that do not match the
user preferences) and exports the repaired model. Figure 5
shows all sequences found for repairing the model in Fig. 4.
For better understanding, we include parameters used in each
repairing action. At the moment, these parameters are selected
automatically by the algorithm and they work as placeholders.
In the future, users will teach the algorithm which parameters
they prefer. It is necessary to clarify that err13 gets repaired
when err14 does, that is why it does not appear in any
of the sequences. Also, err14 appears twice in sequences 4
and 5 because, when deleting part of the reference, the error
reappears on its opposite. Sequences from 2 to 5 are discarded
since they delete elements in the model and therefore do not
match the user preferences. Finally, sequence 6 is the one
chosen for repairing the mutant model. It repairs err6 twice,
since after setting err27’s upper bound to 1, the lower bound
is higher thus leading to a new err6. Despite this, sequence 6
has a higher total weight than sequence 1, as for preserving
the original model structure, sequence 1 implies changing the
return type of an operation to repair err27 and gets punished.

B. Results

This subsection discusses the results obtained from the
evaluation. A set of 100 mutant models are repaired, repairing
a total of 339 errors among all of them. All mutants follow
the repairing preferences presented in Section IV-A: (i) avoid



err27 - setEType(EString)
err6 - setLowerBound(0)
err40 - setEType(EString)
err14 - setEOpposite(null)

err27 - setEType(EString)
err6 - setLowerBound(0)
err40 - setEType(EString)
err14 - delete(reference)
err14 - setEOpposite(null)

err27 - setEType(EString)
err6 - setLowerBound(0)
err40 - setEType(EString)
err14 - delete(reference)
err14 - delete(opposite_reference)

err27 - setUpperBound(1)
err6 - setLowerBound(0)
err6 - setLowerBound(0)
err40 - setEType(EString)
err14 - setEOpposite(null)

err27 - setEType(EString)
err6 - setLowerBound(0)
err40 - delete(method_parameter)
err14 - setEOpposite(null)

err27 - setEType(EString)
err6 -  delete(method)
err14 - setEOpposite(null)

Sequence 1 Sequence 2

Sequence 3
Sequence 4

Sequence 5 Sequence 6

Fig. 5: Sequences found for repairing the example mutant

deletion of elements from the model, (ii) repair errors as high
in the error context hierarchy as possible and (iii) punish
modification of the original model structure. For half of the
models, one repairing sequence is found, for the rest we are
able to find between 2 and 5 possible solutions per model.
Sequences not matching user preferences are not included (for
example, of the sequences shown in Fig. 5, only 1 and 6 would
be included, since the other 4 do not match the requirement of
not deleting elements in the model). As stated in Section IV,
there are 20 mutants per original model, a total of 5 batches
of mutants. The order of repairing is one batch after another
(from now on batches A to E), it takes 48.8s (48842ms) to
repair all mutants in this order: (a) RandomEMF (models 0-
19), (b) OCCIware ecore (models 20-39), (c) amlMetaModel
(models 40-59), (d) EMF-fragments (models 60-79) and (e)
MDEForge (models 80-99).

Figure 6 shows how much time (in miliseconds) it takes
to repair each model (axis X represents model’s number). It
is worth appreciating how the execution time drops drastically
when working within the same batch of mutants (mutants from
same original model tend to have similar errors). Execution
time increases when facing a new batch and therefore new
errors. Also, the initial peak of batch A (model 0) is bigger
than peaks in B, C and D (20, 40 and 60) since they share
many errors, this is especially visible in B. However, batch
E’s peak is higher than A’s, due to its size (batch E is the one
with biggest models). Also, although execution time tends to
improve in batch E, it is more unstable than other batches due
to these models size and diversity of errors.

To provide further testing on how performance time im-
proved when facing the same errors, we repaired all mutants
three consecutive times. Repairing the 100 mutants took 48.8s,
33.4s and 28.3s, respectively in each round. Performance
gets faster each time, especially from the first to the second
repairing round, where repairing time got reduced by a 31,48%
while from the second to the third one there was a 10,47%
improvement.

In conclusion, all mutant models in the evaluation are
repaired accordingly to the user preferences. After execution, a

0 20 40 60 80 99

0

1,000

2,000

Model ID

R
ep

ai
ri

ng
tim

e

Fig. 6: Evolution of execution time in ms for each repairing

repaired Ecore file for each of them is exported. For half of the
models the algorithm was able to find more than one solution.
Our approach is able to learn from errors already repaired and
therefore repair them when faced again in a more efficient way.
We consider these results successful and we believe further
research in this direction could be beneficial for the model
repair field.

V. THREATS TO VALIDITY

Although we consider the evaluation successful in proving
that RL can be a good solution for personalized and automatic
repair of models, we face some validations issues that are
worth discussing in this section.

The reasons for using AMOR are: its easy integration with
EMF and the randomness of the introduced mutations. Other
tools were also pondered, like Wodel: a Domain-Specific Lan-
guage for the specification and generation of model mutants
[19]. However, it was discarded since it requires to define
which specific mutations will be introduced, and we did not
want to be in control of the produced mutants in order to
enhance the validity of the evaluation.

The 5 original Ecore files used in the evaluation were
selected arbitrarily from GitHub, being the only requisite that
AMOR could process and introduce errors with diversity. We
opted to search for files in GitHub because we could not
find any benchmark for testing model repairing tools. These
5 files are different from one another, but they do not cover
all possibilities within Ecore models. We also considered to
use an instance generator to create Ecore models ramdomly
and then mutate them. This possibility was discarded because
generator tools create synthetic models and we wanted the
mutants to be as close as possible to real models.

Additionally, mutants from the same model have similar
errors between them. This is beneficial for the evaluation as it
shows how the algorithm actually learns from already repaired
errors, but it also reduces the variety of errors tested. Another
issue is that, despite the random nature of AMOR, it has a
predefined set of mutations, and the errors it produces might
not be as complex as errors introduced by a human.



Regarding personalization, no external user participated
during the evaluation. Instead, we simulated some user prefer-
ences and implemented them into the reward system. Although
these preferences were fictitious, we believe they were close
enough to what a real modeler could have selected.

The source code of the implemented evaluation together
with the mutant models we repaired are allocated in [12],
available to download and test. The information provided in
Sections III and IV shows transparency about our research,
which should make the process explained in this paper repli-
cable.

VI. RELATED WORK

Model repair is a research field which has drawn the
interest of many researchers to formulate approaches and build
different tools to repair broken models. The main feature
that distinguish our approach from others is the capability
to learn from each model repaired in order to streamline the
performance.

We could not find in the literature any research applying RL
to model repair. The most similar work to ours we could find
is [20], where Puissant et al. present Badger, a tool based on
an artificial intelligence technique called automated planning.
Badger generates sequences that lead from an initial state to a
defined goal. It has a set of repairing operations to which users
can assign costs and weights to decide its priority. Badger
generates a set of plans, each plan being a possible way to
repair one error. We prefer to generate sequences to repair
the whole model, since some repair actions can modify the
model drastically, and we consider counter-intuitive to decide
which action to apply without knowing its consequences.
Additionally, RL performs better after each execution, while
automated planning does not.

Nassar et al. [21] propose a rule-based prototype where
EMF models are automatically completed, with user interven-
tion in the process. Our approach has more autonomy, since
user preferences are only introduced at the beginning of the
repair process and not during. Rule-based approaches excel
when repairing the same errors in the same scenario. Our
approach repairs not only errors already faced but also similar
ones, in the same or different scenarios. In the evaluation
presented in Section IV, we prove our approach is able to
repair errors of different nature found in different models.

Taentzer et al. [22] present a prototype based on graph
transformation theory for change-preserving model repair. In
their approach, authors check operations performed on a
model to identify which caused inconsistencies and apply the
correspondent consistency-preserving operations, maintaining
already performed changes on the model. Their preservation
approach is interesting, however it only works assuming that
the latest change of the model is the most significant.

Kretschmer et al. introduce in [23] an approach for dis-
covering and validating values for repairing inconsistencies
automatically. Values are found by using a validation tree to
reduce the state space size. Trees tend to lead to the same solu-
tions once and again due to their exploitation nature (probing a

limited region of the search space). Differently, RL algorithms
include both exploitation and exploration (randomly exploring
a much larger portion of the search space with the hope of
finding other promising solutions that would not be selected
normally), allowing to find new and, sometimes more optimal
fixes for a given problem.

Lastly, it is worth mentioning search-based and genetic
algorithm-based approaches since, although they have not
been applied yet to model repair, they can be considered as
possible competitors to RL. These techniques have showed
promising results dealing with model transformations and
evolution scenarios, for example in [24] Kessentini et al. use
a search-based algorithm for model change detection. These
algorithms deal efficiently with large state space scenarios,
however they cannot learn from previous tasks nor improve
their performance. While RL is less efficient when dealing
with large state spaces, it can compensate with its learning
capability. At the beginning performance might be poor, but
with time repairing becomes straightforward. Also, search and
genetic algorithms require a fitness function to converge. This
function is more rigid to personalize than RL rewards. While
in RL is easy to adapt different rewards for individual actions
or complete sequences, is not so intuitive how to provide
personalization at different levels with a fitness function.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach to repair models
using RL. With RL we are able to repair models automatically
and to provide personalized results. By taking into account
user preferences, RL rewards can be modified to produce
different repairing sequences. We presented an evaluation of
our approach, in which we repair a set of broken mutant
models. To show how the algorithm provides personalized
repairs, we simulated some user preferences such as avoiding
deletion of model elements. The evaluation showed how Q-
Learning repaired and provided personalized solutions for all
our 100 test models. This works as a proof of concept and
shows the benefits of repairing models using RL. Our results
are promising and can be seen as an indicator of the potential
of this research direction.

In the future, we would like to work further on personalized
repairing, first by providing users a mean to introduce their
own preferences, through an interface or domain specific
language. We are aware of the limitations of fully automated
model repair, hence we plan to research which are the best
terms to keep a human in the loop while repairing. Also, we
want to focus on how users can improve the results obtained
with RL when facing situations where different actions are
able to repair the same error. It is essential to find the
balance between personalized results and a generic approach,
where knowledge gained from repairing models under certain
preferences can be reused when working with new broken
models and different preferences. The focus will be to research
how to store this knowledge so that personalization from one
user do not prejudice other users experience.



At the moment, our implementation only repairs models
with respect to the Ecore metamodel, future development will
include support for domain-specific metamodels.

So far, we repair errors in the order they are returned by
EMF, we are aware altering this order will have consequences
in the produced sequences and therefore we need to perform
further testing in this direction. Now, knowing that RL can
be used to repair models, we would like to put more focus
on assuring the quality of repaired models. So far, the only
measurable quality is how much it fits user preferences. In the
future, we want not only to produce correct models but also
to enhance their quality based on metrics [25]. One exciting
area we want to study is the refactoring of models using RL
to make them more aligned to architectural patterns given by
textbooks or companies. Additional rewards could be related to
how well the models meet the coupling and cohesion criteria.

Finally, we would like to test other scenarios and model-
ing environments for model repairing, as well as other RL
algorithms [4].

REFERENCES

[1] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice
in model-driven engineering,” IEEE software, vol. 31, no. 3, pp. 79–85,
2014.

[2] N. Macedo, T. M. S. Jorge, and A. Cunha, “A feature-based classification
of model repair approaches,” 2017.

[3] A. Barriga, A. Rutle, and R. Heldal, “Automatic model repair using
reinforcement learning,” in Proceedings of MODELS 2018 Workshops,
Copenhagen, Denmark, October, 14, 2018., 2018, pp. 781–786.
[Online]. Available: http://ceur-ws.org/Vol-2245/ammore paper 1.pdf

[4] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
2011.

[5] J. Cabot, R. Clarisó, M. Brambilla, and S. Gérard, “Cognifying model-
driven software engineering,” in Federation of International Conferences
on Software Technologies: Applications and Foundations. Springer,
2017, pp. 154–160.

[6] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine
learning. MIT press, 2018.

[7] B. Karasneh and M. R. Chaudron, “Online img2uml repository: An
online repository for UML,” in EESSMOD@ MoDELS, 2013, pp. 61–
66.

[8] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino, and
A. Pierantonio, “Mdeforge: an extensible web-based modeling platform.”
in CloudMDE@ MoDELS, 2014, pp. 66–75.

[9] R. Bellman, Dynamic programming. Courier Corporation, 2013.
[10] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement

learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[11] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[12] A. Barriga, “Project PARMOREL.” [Online]. Available:
https://ict.hvl.no/project-parmorel/

[13] markus1978, “markus1978/randomemf,” Dec 2015. [Online]. Available:
https://github.com/markus1978/RandomEMF/

[14] Occiware, “occiware/ecore,” Sep 2017. [Online]. Available:
https://github.com/occiware/ecore/

[15] amlModeling, “amlmodeling/amlmetamodel,” Jan 2016. [Online].
Available: https://github.com/amlModeling/amlMetaModel

[16] markus1978, “markus1978/emf-fragments,” May 2014. [Online].
Available: https://github.com/markus1978/emf-fragments

[17] MDEGroup, “Mdegroup/mdeforge,” Mar 2018. [Online]. Available:
https://github.com/MDEGroup/MDEForge

[18] K. Altmanninger, G. Kappel, A. Kusel, W. Retschitzegger, M. Seidl,
W. Schwinger, and M. Wimmer, “Amor–towards adaptable model ver-
sioning,” in 1st International Workshop on Model Co-Evolution and
Consistency Management, in conjunction with MODELS, vol. 8, 2008,
pp. 4–50.

[19] P. Gómez-Abajo, E. Guerra, and J. de Lara, “Wodel: A domain-
specific language for model mutation,” in Proceedings of the 31st
Annual ACM Symposium on Applied Computing, ser. SAC ’16. New
York, NY, USA: ACM, 2016, pp. 1968–1973. [Online]. Available:
http://doi.acm.org/10.1145/2851613.2851751

[20] J. P. Puissant, R. Van Der Straeten, and T. Mens, “Resolving model in-
consistencies using automated regression planning,” Software & Systems
Modeling, vol. 14, no. 1, pp. 461–481, 2015.

[21] N. Nassar, H. Radke, and T. Arendt, “Rule-based repair of EMF models:
An automated interactive approach,” in International Conference on
Theory and Practice of Model Transformations. Springer, 2017, pp.
171–181.

[22] G. Taentzer, M. Ohrndorf, Y. Lamo, and A. Rutle, “Change-preserving
model repair,” in International Conference on Fundamental Approaches
to Software Engineering. Springer, 2017, pp. 283–299.

[23] R. Kretschmer, D. E. Khelladi, and A. Egyed, “An automated and instant
discovery of concrete repairs for model inconsistencies,” in Proceedings
of the 40th ICSE: Companion Proceeedings. ACM, 2018, pp. 298–299.

[24] M. Kessentini, U. Mansoor, M. Wimmer, A. Ouni, and K. Deb, “Search-
based detection of model level changes,” Empirical Software Engineer-
ing, vol. 22, no. 2, pp. 670–715, 2017.

[25] T. Arendt, P. Stepien, and G. Taentzer, “EMF metrics: Specification and
calculation of model metrics within the eclipse modeling framework,”
in of the BENEVOL workshop, 2010.


